doodle2vid / app.py
0xqtpie's picture
fixing inputs
2ceaab0
raw
history blame
10.5 kB
#!/usr/bin/env python
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF
from diffusers import (
AutoencoderKL,
EulerAncestralDiscreteScheduler,
StableDiffusionXLAdapterPipeline,
T2IAdapter,
)
from modelscope.pipelines import pipeline
from modelscope.outputs import OutputKeys
DESCRIPTION = '''# doodle2vid
Combining T2I-Adapter-SDXL with MS-Image2Video to create a doodle to video pipeline.
Shout-out to [fffiloni](https://huggingface.co/fffiloni) & [ARC Lab, Tencent PCG](https://huggingface.co/TencentARC) 🗣️
How to use: Draw a doodle in the canvas, and click "Run" to generate a video.
You can also provide a prompt with more details and choose a style.
'''
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
)
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.to(device)
else:
pipe = None
MAX_SEED = np.iinfo(np.int32).max
video_pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0')
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def inferVideo(image: PIL.Image.Image) -> str:
# Save the passed image to a temp file
temp_path = "temp_input_image.png"
image.save(temp_path)
output_video_path = video_pipe(temp_path, output_video='output.mp4')[OutputKeys.OUTPUT_VIDEO]
print(output_video_path)
return output_video_path
def inferImage(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
style_name: str = DEFAULT_STYLE_NAME,
num_steps: int = 25,
guidance_scale: float = 5,
adapter_conditioning_scale: float = 0.8,
adapter_conditioning_factor: float = 0.8,
seed: int = 0,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
image = image.convert("RGB")
image = TF.to_tensor(image) > 0.5
image = TF.to_pil_image(image.to(torch.float32))
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
generator = torch.Generator(device=device).manual_seed(seed)
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
adapter_conditioning_scale=adapter_conditioning_scale,
adapter_conditioning_factor=adapter_conditioning_factor,
).images[0]
return out
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION, elem_id="description")
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(
source="canvas",
tool="sketch",
type="pil",
image_mode="L",
invert_colors=True,
shape=(1024, 1024),
brush_radius=4,
height=440,
)
prompt = gr.Textbox(label="Prompt")
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
)
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
adapter_conditioning_scale = gr.Slider(
label="Adapter conditioning scale",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
adapter_conditioning_factor = gr.Slider(
label="Adapter conditioning factor",
info="Fraction of timesteps for which adapter should be applied",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result_image = gr.Image(label="Intermediate Image Output", height=400)
result_video = gr.Video(label="Final Video Output", height=400)
inputs = [
image,
prompt,
negative_prompt,
style,
num_steps,
guidance_scale,
adapter_conditioning_scale,
adapter_conditioning_factor,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=inferImage,
inputs=inputs,
outputs=result_image,
api_name=False,
).then(
fn=inferVideo,
inputs=[result_image],
outputs=result_video,
api_name=False,
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=inferImage,
inputs=inputs,
outputs=result_image,
api_name=False,
).then(
fn=inferVideo,
inputs=[result_image],
outputs=result_video,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=inferImage,
inputs=inputs,
outputs=result_image,
api_name=False,
).then(
fn=inferVideo,
inputs=[result_image],
outputs=result_video,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()