Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,376 Bytes
a84a65c 4eb4d55 a84a65c 3af9bd5 a84a65c 1ac622b a84a65c 6cdb17b a84a65c c54648b a84a65c 44da01a a84a65c 45d0fef a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import spaces
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from tqdm import tqdm
import preprocess.n2s_by_openai as n2s
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
import math
import gradio as gr
def load_model_from_config(config, ckpt = None, verbose=True):
model = instantiate_from_config(config.model)
if ckpt:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
else:
print(f"Note chat no ckpt is loaded !!!")
if torch.cuda.is_available():
model.cuda()
model.eval()
return model
class GenSamples:
def __init__(self,opt, model,outpath,config, vocoder = None,save_mel = True,save_wav = True) -> None:
self.opt = opt
self.model = model
self.outpath = outpath
if save_wav:
assert vocoder is not None
self.vocoder = vocoder
self.save_mel = save_mel
self.save_wav = save_wav
self.channel_dim = self.model.channels
self.config = config
def gen_test_sample(self,prompt, mel_name = None,wav_name = None, gt=None, video=None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
uc = None
record_dicts = []
if self.opt['scale'] != 1.0:
try: # audiocaps
uc = self.model.get_learned_conditioning({'ori_caption': "",'struct_caption': ""})
except: # audioset
uc = self.model.get_learned_conditioning(prompt['ori_caption'])
for n in range(self.opt['n_iter']):
try: # audiocaps
c = self.model.get_learned_conditioning(prompt) # shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
except: # audioset
c = self.model.get_learned_conditioning(prompt['ori_caption'])
if self.channel_dim>0:
shape = [self.channel_dim, self.opt['H'], self.opt['W']] # (z_dim, 80//2^x, 848//2^x)
else:
shape = [1, self.opt['H'], self.opt['W']]
x0 = torch.randn(shape, device=self.model.device)
if self.opt['scale'] == 1: # w/o cfg
sample, _ = self.model.sample(c, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
else: # cfg
sample, _ = self.model.sample_cfg(c, self.opt['scale'], uc, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
x_samples_ddim = self.model.decode_first_stage(sample)
for idx,spec in enumerate(x_samples_ddim):
spec = spec.squeeze(0).cpu().numpy()
# print(spec[0])
record_dict = {'caption':prompt['ori_caption'][0]}
if self.save_mel:
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
np.save(mel_path,spec)
record_dict['mel_path'] = mel_path
if self.save_wav:
wav = self.vocoder.vocode(spec)
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
soundfile.write(wav_path, wav, self.opt['sample_rate'])
record_dict['audio_path'] = wav_path
record_dicts.append(record_dict)
return record_dicts
@spaces.GPU(duration=200)
def infer(ori_prompt, ddim_steps, scale, seed):
# np.random.seed(seed)
# torch.manual_seed(seed)
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
opt = {
'sample_rate': 16000,
'outdir': 'outputs/txt2music-samples',
'ddim_steps': ddim_steps,
'n_iter': 1,
'H': 20,
'W': 312,
'scale': scale,
'resume': 'useful_ckpts/music_generation/119.ckpt',
'base': 'configs/txt2music-cfm1-cfg-LargeDiT3.yaml',
'vocoder_ckpt': 'useful_ckpts/bigvnat',
}
config = OmegaConf.load(opt['base'])
model = load_model_from_config(config, opt['resume'])
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
os.makedirs(opt['outdir'], exist_ok=True)
vocoder = VocoderBigVGAN(opt['vocoder_ckpt'],device)
generator = GenSamples(opt, model,opt['outdir'],config, vocoder,save_mel=False,save_wav=True)
with torch.no_grad():
with model.ema_scope():
wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}'
generator.gen_test_sample(prompt,wav_name=wav_name)
file_path = os.path.join(opt['outdir'],wav_name+'_0.wav')
print(f"Your samples are ready and waiting four you here: \n{file_path} \nEnjoy.")
return file_path
def my_inference_function(text_prompt, ddim_steps, scale, seed):
file_path = infer(text_prompt, ddim_steps, scale, seed)
return file_path
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## Make-An-Audio 3: Transforming Text into Audio via Flow-based Large Diffusion Transformers")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt: Input your text here. ")
run_button = gr.Button()
with gr.Accordion("Advanced options", open=False):
ddim_steps = gr.Slider(label="ODE Steps", minimum=1,
maximum=50, value=25, step=1)
scale = gr.Slider(
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
)
seed = gr.Slider(
label="Seed:Change this value (any integer number) will lead to a different generation result.",
minimum=0,
maximum=2147483647,
step=1,
value=44,
)
with gr.Column():
outaudio = gr.Audio()
run_button.click(fn=my_inference_function, inputs=[
prompt, ddim_steps, scale, seed], outputs=[outaudio])
with gr.Row():
with gr.Column():
gr.Examples(
examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
inputs = [prompt, ddim_steps, scale, seed],
outputs = [outaudio]
)
with gr.Column():
pass
demo.launch()
# gradio_interface = gradio.Interface(
# fn = my_inference_function,
# inputs = "text",
# outputs = "audio"
# )
# gradio_interface.launch()
# text_prompt = 'An amateur recording features a steel drum playing in a higher register'
# # text_prompt = 'A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques'
# ddim_steps=25
# scale=5.0
# seed=55
# my_inference_function(text_prompt, ddim_steps, scale, seed)
|