File size: 8,376 Bytes
a84a65c
4eb4d55
 
 
 
 
 
 
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3af9bd5
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac622b
 
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cdb17b
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
c54648b
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44da01a
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0fef
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import spaces
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from tqdm import tqdm
import preprocess.n2s_by_openai as n2s
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
import math
import gradio as gr

def load_model_from_config(config, ckpt = None, verbose=True):
    model = instantiate_from_config(config.model)
    if ckpt:
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        sd = pl_sd["state_dict"]
        
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)
    else:
        print(f"Note chat no ckpt is loaded !!!")
    if torch.cuda.is_available():
        model.cuda()
    model.eval()
    return model


class GenSamples:
    def __init__(self,opt, model,outpath,config, vocoder = None,save_mel = True,save_wav = True) -> None:
        self.opt = opt
        self.model = model
        self.outpath = outpath
        if save_wav:
            assert vocoder is not None
            self.vocoder = vocoder
        self.save_mel = save_mel
        self.save_wav = save_wav
        self.channel_dim = self.model.channels
        self.config = config
    
    def gen_test_sample(self,prompt, mel_name = None,wav_name = None, gt=None, video=None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
        uc = None
        record_dicts = []
        if self.opt['scale'] != 1.0:
            try: # audiocaps
                uc = self.model.get_learned_conditioning({'ori_caption': "",'struct_caption': ""})
            except: # audioset
                uc = self.model.get_learned_conditioning(prompt['ori_caption'])
        for n in range(self.opt['n_iter']):
            try: # audiocaps
                c = self.model.get_learned_conditioning(prompt) # shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
            except: # audioset
                c = self.model.get_learned_conditioning(prompt['ori_caption'])

            if self.channel_dim>0:
                shape = [self.channel_dim, self.opt['H'], self.opt['W']]  # (z_dim, 80//2^x, 848//2^x)
            else:
                shape = [1, self.opt['H'], self.opt['W']]

            x0 = torch.randn(shape, device=self.model.device)

            if self.opt['scale'] == 1: # w/o cfg
                sample, _ = self.model.sample(c, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
            else:  # cfg
                sample, _ = self.model.sample_cfg(c, self.opt['scale'], uc, 1, timesteps=self.opt['ddim_steps'], x_latent=x0)
            x_samples_ddim = self.model.decode_first_stage(sample)

            for idx,spec in enumerate(x_samples_ddim):
                spec = spec.squeeze(0).cpu().numpy()
                # print(spec[0])
                record_dict = {'caption':prompt['ori_caption'][0]}
                if self.save_mel:
                    mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
                    np.save(mel_path,spec)
                    record_dict['mel_path'] = mel_path
                if self.save_wav:
                    wav = self.vocoder.vocode(spec)
                    wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
                    soundfile.write(wav_path, wav, self.opt['sample_rate'])
                    record_dict['audio_path'] = wav_path
                record_dicts.append(record_dict)

        return record_dicts

@spaces.GPU(duration=200)
def infer(ori_prompt, ddim_steps, scale, seed):
    # np.random.seed(seed)
    # torch.manual_seed(seed)
    prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')

    opt = {
        'sample_rate': 16000,
        'outdir': 'outputs/txt2music-samples',
        'ddim_steps': ddim_steps,
        'n_iter': 1,
        'H': 20,
        'W': 312,
        'scale': scale,
        'resume': 'useful_ckpts/music_generation/119.ckpt',
        'base': 'configs/txt2music-cfm1-cfg-LargeDiT3.yaml',
        'vocoder_ckpt': 'useful_ckpts/bigvnat',
    }
    
    config = OmegaConf.load(opt['base'])
    model = load_model_from_config(config, opt['resume'])

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    os.makedirs(opt['outdir'], exist_ok=True)
    vocoder = VocoderBigVGAN(opt['vocoder_ckpt'],device)
    generator = GenSamples(opt, model,opt['outdir'],config, vocoder,save_mel=False,save_wav=True)
    
    with torch.no_grad():
        with model.ema_scope():
            wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}'
            generator.gen_test_sample(prompt,wav_name=wav_name)
            
    file_path = os.path.join(opt['outdir'],wav_name+'_0.wav')
    print(f"Your samples are ready and waiting four you here: \n{file_path} \nEnjoy.")
    return file_path

def my_inference_function(text_prompt, ddim_steps, scale, seed):
    file_path = infer(text_prompt, ddim_steps, scale, seed)
    return file_path


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## Make-An-Audio 3: Transforming Text into Audio via Flow-based Large Diffusion Transformers")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt: Input your text here.        ")
            run_button = gr.Button()

            with gr.Accordion("Advanced options", open=False):
                ddim_steps = gr.Slider(label="ODE Steps", minimum=1,
                                       maximum=50, value=25, step=1)
                scale = gr.Slider(
                    label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
                )
                seed = gr.Slider(
                    label="Seed:Change this value (any integer number) will lead to a different generation result.",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    value=44,
                )

        with gr.Column():
            outaudio = gr.Audio()
    
    run_button.click(fn=my_inference_function, inputs=[
                    prompt, ddim_steps, scale, seed], outputs=[outaudio])
    with gr.Row():
        with gr.Column():
            gr.Examples(
                        examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
                                    ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
                                    ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
                                    ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
                                    ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
                        inputs = [prompt, ddim_steps, scale, seed],
                        outputs = [outaudio]
                        )
        with gr.Column():
            pass

demo.launch()


# gradio_interface = gradio.Interface(
#     fn = my_inference_function,
#     inputs = "text",
#     outputs = "audio"
# )
# gradio_interface.launch()
# text_prompt = 'An amateur recording features a steel drum playing in a higher register'
# # text_prompt = 'A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques'
# ddim_steps=25
# scale=5.0
# seed=55
# my_inference_function(text_prompt, ddim_steps, scale, seed)