Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
from scipy.io.wavfile import read | |
import torch | |
import torch.nn as nn | |
MAX_WAV_VALUE = 32768.0 | |
def load_wav(full_path): | |
sampling_rate, data = read(full_path) | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log10(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log10(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
class MelNet(nn.Module): | |
def __init__(self,hparams,device='cpu') -> None: | |
super().__init__() | |
self.n_fft = hparams['fft_size'] | |
self.num_mels = hparams['audio_num_mel_bins'] | |
self.sampling_rate = hparams['audio_sample_rate'] | |
self.hop_size = hparams['hop_size'] | |
self.win_size = hparams['win_size'] | |
self.fmin = hparams['fmin'] | |
self.fmax = hparams['fmax'] | |
self.device = device | |
mel = librosa_mel_fn(self.sampling_rate, self.n_fft, self.num_mels, self.fmin, self.fmax) | |
self.mel_basis = torch.from_numpy(mel).float().to(self.device) | |
self.hann_window = torch.hann_window(self.win_size).to(self.device) | |
def to(self,device,**kwagrs): | |
super().to(device=device,**kwagrs) | |
self.mel_basis = self.mel_basis.to(device) | |
self.hann_window = self.hann_window.to(device) | |
self.device = device | |
def forward(self,y,center=False, complex=False): | |
if isinstance(y,np.ndarray): | |
y = torch.FloatTensor(y) | |
if len(y.shape) == 1: | |
y = y.unsqueeze(0) | |
y = y.clamp(min=-1., max=1.).to(self.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), [int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)], | |
mode='reflect') | |
y = y.squeeze(1) | |
spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, | |
center=center, pad_mode='reflect', normalized=False, onesided=True,return_complex=complex) | |
if not complex: | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(self.mel_basis, spec) | |
spec = spectral_normalize_torch(spec) | |
else: | |
B, C, T, _ = spec.shape | |
spec = spec.transpose(1, 2) # [B, T, n_fft, 2] | |
return spec | |
## below can be used in one gpu, but not ddp | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram(y, hparams, center=False, complex=False): # y should be a tensor with shape (b,wav_len) | |
# hop_size: 512 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate) | |
# win_size: 2048 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate) | |
# fmin: 55 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) | |
# fmax: 10000 # To be increased/reduced depending on data. | |
# fft_size: 2048 # Extra window size is filled with 0 paddings to match this parameter | |
# n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, | |
n_fft = hparams['fft_size'] | |
num_mels = hparams['audio_num_mel_bins'] | |
sampling_rate = hparams['audio_sample_rate'] | |
hop_size = hparams['hop_size'] | |
win_size = hparams['win_size'] | |
fmin = hparams['fmin'] | |
fmax = hparams['fmax'] | |
if isinstance(y,np.ndarray): | |
y = torch.FloatTensor(y) | |
if len(y.shape) == 1: | |
y = y.unsqueeze(0) | |
y = y.clamp(min=-1., max=1.) | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | |
mel_basis[str(fmax) + '_' + str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), [int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)], | |
mode='reflect') | |
y = y.squeeze(1) | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], | |
center=center, pad_mode='reflect', normalized=False, onesided=True,return_complex=complex) | |
if not complex: | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(mel_basis[str(fmax) + '_' + str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
else: | |
B, C, T, _ = spec.shape | |
spec = spec.transpose(1, 2) # [B, T, n_fft, 2] | |
return spec | |