File size: 6,110 Bytes
fa25a07
 
7e388d4
fa25a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e388d4
 
fa25a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from pathlib import Path
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
from wav_evaluation.models.CLAPWrapper import CLAPWrapper

SAMPLE_RATE = 16000

torch.set_grad_enabled(False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

def dur_to_size(duration):
    latent_width = int(duration * 7.8)
    if latent_width % 4 != 0:
        latent_width = (latent_width // 4 + 1) * 4
    return latent_width

def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)

    model = model.to(device)
    model.cond_stage_model.to(model.device)
    model.cond_stage_model.device = model.device
    print(model.device,device,model.cond_stage_model.device)
    sampler = DDIMSampler(model)

    return sampler

sampler = initialize_model('configs/text_to_audio/txt2audio_args.yaml', 'useful_ckpts/maa1_caps.ckpt')
vocoder = VocoderBigVGAN('vocoder/logs/bigvnat',device=device)
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())

def select_best_audio(prompt,wav_list):
    text_embeddings = clap_model.get_text_embeddings([prompt])
    score_list = []
    for data in wav_list:
        sr,wav = data
        audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
        score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
        score_list.append(score)
    max_index = np.array(score_list).argmax()
    print(score_list,max_index)
    return wav_list[max_index]

def txt2audio(sampler,vocoder,prompt, seed, scale, ddim_steps, n_samples=1, W=624, H=80):
    prng = np.random.RandomState(seed)
    start_code = prng.randn(n_samples, sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
    
    uc = None
    if scale != 1.0:
        uc = sampler.model.get_learned_conditioning(n_samples * [""])
    c = sampler.model.get_learned_conditioning(n_samples * [prompt])# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
    shape = [sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
    samples_ddim, _ = sampler.sample(S=ddim_steps,
                                        conditioning=c,
                                        batch_size=n_samples,
                                        shape=shape,
                                        verbose=False,
                                        unconditional_guidance_scale=scale,
                                        unconditional_conditioning=uc,
                                        x_T=start_code)

    x_samples_ddim = sampler.model.decode_first_stage(samples_ddim)

    wav_list = []
    for idx,spec in enumerate(x_samples_ddim):
        wav = vocoder.vocode(spec)
        wav_list.append((SAMPLE_RATE,wav))
    best_wav = select_best_audio(prompt,wav_list)
    return best_wav


def predict(prompt, ddim_steps, num_samples, scale, seed):
    melbins,mel_len = 80,624
    with torch.no_grad():
        result = txt2audio(
            sampler=sampler,
            vocoder=vocoder,
            prompt=prompt,
            seed=seed,
            scale=scale,
            ddim_steps=ddim_steps,
            n_samples=num_samples,
            H=melbins, W=mel_len
        )

    return result


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## Make-An-Audio: Text-to-Audio Generation")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt: Input your text here.        ")
            run_button = gr.Button(label="Run")

            
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(
                    label="Select from audios num.This number control the number of candidates \
                        (e.g., generate three audios and choose the best to show you). A Larger value usually lead to \
                        better quality with heavier computation", minimum=1, maximum=10, value=3, step=1)
                # num_samples = 1
                ddim_steps = gr.Slider(label="Steps", minimum=1,
                                       maximum=150, value=100, step=1)
                scale = gr.Slider(
                    label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=4.0, value=1.5, step=0.1
                )
                seed = gr.Slider(
                    label="Seed:Change this value (any integer number) will lead to a different generation result.",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    value=44,
                )

        with gr.Column():
            # audio_list = []
            # for i in range(int(num_samples)):
            #     audio_list.append(gr.outputs.Audio())
            outaudio = gr.Audio()


    run_button.click(fn=predict, inputs=[
                    prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])# inputs的参数只能传gr.xxx
    with gr.Row():
        with gr.Column():
            gr.Examples(
                        examples = [['a dog barking and a bird chirping',100,3,2,55],['fireworks pop and explode',100,3,2,55],
                                        ['piano and violin plays',100,3,2,55],['wind thunder and rain falling',100,3,2,55],['music made by drum kit',100,3,2,55]],
                        inputs = [prompt,ddim_steps, num_samples, scale, seed],
                        outputs = [outaudio]
                        )
        with gr.Column():
            pass

demo.launch()