Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from transformers import AutoModel | |
from .audio import get_audio_encoder | |
class Projection(nn.Module): | |
def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None: | |
super().__init__() | |
self.linear1 = nn.Linear(d_in, d_out, bias=False) | |
self.linear2 = nn.Linear(d_out, d_out, bias=False) | |
self.layer_norm = nn.LayerNorm(d_out) | |
self.drop = nn.Dropout(p) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
embed1 = self.linear1(x) | |
embed2 = self.drop(self.linear2(F.gelu(embed1))) | |
embeds = self.layer_norm(embed1 + embed2) | |
return embeds | |
class AudioEncoder(nn.Module): | |
def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int, | |
hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None: | |
super().__init__() | |
audio_encoder = get_audio_encoder(audioenc_name) | |
self.base = audio_encoder( | |
sample_rate, window_size, | |
hop_size, mel_bins, fmin, fmax, | |
classes_num, d_in) | |
self.projection = Projection(d_in, d_out) | |
def forward(self, x): | |
out_dict = self.base(x) | |
audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output'] | |
projected_vec = self.projection(audio_features) | |
return projected_vec, audio_classification_output | |
class TextEncoder(nn.Module): | |
def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None: | |
super().__init__() | |
self.base = AutoModel.from_pretrained(text_model) | |
self.projection = Projection(transformer_embed_dim, d_out) | |
def forward(self, x): | |
out = self.base(**x)[0] | |
out = out[:, 0, :] # get CLS token output | |
projected_vec = self.projection(out) | |
return projected_vec | |
class CLAP(nn.Module): | |
def __init__(self, | |
# audio | |
audioenc_name: str, | |
sample_rate: int, | |
window_size: int, | |
hop_size: int, | |
mel_bins: int, | |
fmin: int, | |
fmax: int, | |
classes_num: int, | |
out_emb: int, | |
# text | |
text_model: str, | |
transformer_embed_dim: int, | |
# common | |
d_proj: int, | |
): | |
super().__init__() | |
self.audio_encoder = AudioEncoder( | |
audioenc_name, out_emb, d_proj, | |
sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num) | |
self.caption_encoder = TextEncoder( | |
d_proj, text_model, transformer_embed_dim | |
) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
def forward(self, audio, text): | |
audio_embed, _ = self.audio_encoder(audio) | |
caption_embed = self.caption_encoder(text) | |
return caption_embed, audio_embed, self.logit_scale.exp() |