Spaces:
Runtime error
Runtime error
Update app.py
#11
by
peterquill193
- opened
app.py
CHANGED
@@ -20,33 +20,10 @@ checkpoints = {
|
|
20 |
}
|
21 |
loaded = None
|
22 |
|
23 |
-
|
24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
25 |
if torch.cuda.is_available():
|
26 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
27 |
|
28 |
-
if SAFETY_CHECKER:
|
29 |
-
from safety_checker import StableDiffusionSafetyChecker
|
30 |
-
from transformers import CLIPFeatureExtractor
|
31 |
-
|
32 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
33 |
-
"CompVis/stable-diffusion-safety-checker"
|
34 |
-
).to("cuda")
|
35 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
36 |
-
"openai/clip-vit-base-patch32"
|
37 |
-
)
|
38 |
-
|
39 |
-
def check_nsfw_images(
|
40 |
-
images: list[Image.Image],
|
41 |
-
) -> tuple[list[Image.Image], list[bool]]:
|
42 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
43 |
-
has_nsfw_concepts = safety_checker(
|
44 |
-
images=[images],
|
45 |
-
clip_input=safety_checker_input.pixel_values.to("cuda")
|
46 |
-
)
|
47 |
-
|
48 |
-
return images, has_nsfw_concepts
|
49 |
-
|
50 |
# Function
|
51 |
@spaces.GPU(enable_queue=True)
|
52 |
def generate_image(prompt, ckpt):
|
@@ -63,16 +40,8 @@ def generate_image(prompt, ckpt):
|
|
63 |
|
64 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
65 |
|
66 |
-
if SAFETY_CHECKER:
|
67 |
-
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
68 |
-
if any(has_nsfw_concepts):
|
69 |
-
gr.Warning("NSFW content detected.")
|
70 |
-
return Image.new("RGB", (512, 512))
|
71 |
-
return images[0]
|
72 |
return results.images[0]
|
73 |
|
74 |
-
|
75 |
-
|
76 |
# Gradio Interface
|
77 |
description = """
|
78 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
@@ -98,4 +67,4 @@ with gr.Blocks(css="style.css") as demo:
|
|
98 |
outputs=img,
|
99 |
)
|
100 |
|
101 |
-
demo.queue().launch()
|
|
|
20 |
}
|
21 |
loaded = None
|
22 |
|
|
|
23 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
24 |
if torch.cuda.is_available():
|
25 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Function
|
28 |
@spaces.GPU(enable_queue=True)
|
29 |
def generate_image(prompt, ckpt):
|
|
|
40 |
|
41 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return results.images[0]
|
44 |
|
|
|
|
|
45 |
# Gradio Interface
|
46 |
description = """
|
47 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
|
|
67 |
outputs=img,
|
68 |
)
|
69 |
|
70 |
+
demo.queue().launch()
|