File size: 7,686 Bytes
22917a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
!pip install gradio --quiet
!pip install xformer --quiet
!pip install chromadb --quiet
!pip install langchain --quiet
!pip install accelerate --quiet
!pip install transformers --quiet
!pip install bitsandbytes --quiet
!pip install unstructured --quiet
!pip install sentence-transformers --quiet

import torch
import gradio as gr

from textwrap import fill
from IPython.display import Markdown, display

from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
    )

from langchain import PromptTemplate
from langchain import HuggingFacePipeline

from langchain.vectorstores import Chroma
from langchain.schema import AIMessage, HumanMessage
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoader
from langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChain

from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline

import warnings
warnings.filterwarnings('ignore')



MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME, torch_dtype=torch.float16,
    trust_remote_code=True,
    device_map="auto",
    quantization_config=quantization_config
)

generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
generation_config.max_new_tokens = 1024
generation_config.temperature = 0.001
generation_config.top_p = 0.95
generation_config.do_sample = True
generation_config.repetition_penalty = 1.15

pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    generation_config=generation_config,
)


llm = HuggingFacePipeline(
    pipeline=pipeline,
    )


embeddings = HuggingFaceEmbeddings(
    model_name="thenlper/gte-large",
    model_kwargs={"device": "cuda"},
    encode_kwargs={"normalize_embeddings": True},



urls = [
    "https://www.expansion.com/mercados/cotizaciones/valores/telefonica_M.TEF.html ",
    "https://www.expansion.com/mercados/cotizaciones/valores/bbva_M.BBVA.html ",
    "https://www.expansion.com/mercados/cotizaciones/valores/iberdrola_M.IBE.html",
    "https://www.expansion.com/mercados/cotizaciones/valores/santander_M.SAN.html",
    "https://www.expansion.com/mercados/cotizaciones/valores/ferrovial_M.FER.html",
    "https://www.expansion.com/mercados/cotizaciones/valores/enagas_M.ENG.html",
    "https://www.euroland.com/SiteFiles/market/search.asp?GUID=B8D60F4600CAF1479E480C0BA6CE775E&ViewPageNumber=1&ViewAllStockSelected=False&Operation=selection&SortWinLoser=False&SortDirection=&ColumnToSort=&ClickedWinLoser=&ClickedMarkCap=&NameSearch=&UpperLevel=&LowerLevel=&RegionalIndustry=&RegionalListName=&RegionalListID=&RegionalIndexName=&CorporateSites=False&SharesPerPage=50",
    "https://www.expansion.com/mercados/cotizaciones/indices/ibex35_I.IB.html",
    "https://es.investing.com/equities/telefonica-cash-flow",
    "https://es.investing.com/equities/grupo-ferrovial-cash-flow",
    "https://es.investing.com/equities/bbva-cash-flow",
    "https://es.investing.com/equities/banco-santander-cash-flow",
    "https://es.investing.com/equities/iberdrola-cash-flow",
    "https://es.investing.com/equities/enagas-cash-flow",
    "https://es.investing.com/equities/enagas-ratios",
    "https://es.investing.com/equities/telefonica-ratios",
    "https://es.investing.com/equities/grupo-ferrovial-ratios",
    "https://es.investing.com/equities/bbva-ratios",
    "https://es.investing.com/equities/banco-santander-ratios",
    "https://es.investing.com/equities/iberdrola-ratios"

]

loader = UnstructuredURLLoader(urls=urls)
documents = loader.load()

len(documents)


text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts_chunks = text_splitter.split_documents(documents)

len(texts_chunks)
# output: 21

template = """
[INST] <>
Actúa como un bot financiero experto en el análsis de valores cotizados en el IBEX-35
<>

{context}

{question} [/INST]
"""

prompt = PromptTemplate(template=template, input_variables=["context", "question"])

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=db.as_retriever(search_kwargs={"k": 2}),
    return_source_documents=True,
    chain_type_kwargs={"prompt": prompt},
)

query = "¿Cuál es el precio de la acción de BBVA hoy?"
result_ = qa_chain(
    query
)
result = result_["result"].strip()


display(Markdown(f"<b>{query}</b>"))
display(Markdown(f"<p>{result}</p>"))


query = "Haz un análisis técnico de BBVA  para el año 2022"
result_ = qa_chain(
    query
)
result = result_["result"].strip()


display(Markdown(f"<b>{query}</b>"))
display(Markdown(f"<p>{result}</p>"))

result_["source_documents"]

custom_template = """You are finance AI Assistant Given the
following conversation and a follow up question, rephrase the follow up question
to be a standalone question. At the end of standalone question add this
'Answer the question in English language.' If you do not know the answer reply with 'I am sorry, I dont have enough information'.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:
"""

CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

qa_chain = ConversationalRetrievalChain.from_llm(
    llm=llm,
    retriever=db.as_retriever(search_kwargs={"k": 2}),
    memory=memory,
    condense_question_prompt=CUSTOM_QUESTION_PROMPT,
)


query = "Haz un análisis técnico definiendo todos los ratios de BBVA  para el año 2021"
result_ = qa_chain({"question": query})
result = result_["answer"].strip()

display(Markdown(f"<b>{query}</b>"))
display(Markdown(f"<p>{result}</p>"))


query = "¿Cuánto han crecido las ventas de Iberdrola en los últimos cinco años?"
result_ = qa_chain({"question": query})
result = result_["answer"].strip()

display(Markdown(f"<b>{query}</b>"))
display(Markdown(f"<p>{result}</p>"))


query = "¿Cuál es el precio medio de la acción de Iberdrola en 2022?"
result_ = qa_chain({"question": query})
result = result_["answer"].strip()

display(Markdown(f"<b>{query}</b>"))
display(Markdown(f"<p>{result}</p>"))

def querying(query, history):
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

  qa_chain = ConversationalRetrievalChain.from_llm(
      llm=llm,
      retriever=db.as_retriever(search_kwargs={"k": 2}),
      memory=memory,
      condense_question_prompt=CUSTOM_QUESTION_PROMPT,
  )

  result = qa_chain({"question": query})
  return result["answer"].strip()


iface = gr.ChatInterface(
    fn = querying,
    chatbot=gr.Chatbot(height=600),
    textbox=gr.Textbox(placeholder="¿Cuál es el precio de la acción de BBVA hoy?", container=False, scale=7),
    title="RanitaRené",
    theme="soft",
    examples=["¿Cuál es el precio de la acción de BBVA hoy?",
              "Haz un análisis técnico de BBVA  para el año 2022"
                    ],


    cache_examples=True,
    retry_btn="Repetir",
    undo_btn="Deshacer",
    clear_btn="Borrar",
    submit_btn="Enviar"

    )

iface.launch(share=True)