Spaces:
Running
Running
import librosa | |
import numpy as np | |
import torch | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
checkpoint = "microsoft/speecht5_tts" | |
processor = SpeechT5Processor.from_pretrained(checkpoint) | |
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
def predict(text): | |
if len(text.strip()) == 0: | |
return (16000, np.zeros(0).astype(np.int16)) | |
inputs = processor(text=text, return_tensors="pt") | |
# limit input length | |
input_ids = inputs["input_ids"] | |
input_ids = input_ids[..., :model.config.max_text_positions] | |
speaker_embedding = np.load("cmu_us_ksp_arctic-wav-arctic_b0087.npy") | |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) | |
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) | |
speech = (speech.numpy() * 32767).astype(np.int16) | |
return (16000, speech) | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Text(label="Input Text"), | |
gr.Radio(label="Speaker", choices=[ | |
"KSP (male)" | |
], | |
value="KSP (male)"), | |
], | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy"), | |
] | |
).launch() |