File size: 4,824 Bytes
052db8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import joblib
import numpy as np
import pandas as pd
import folium
import streamlit as st
from streamlit_folium import folium_static
import warnings
warnings.filterwarnings("ignore")

# Define model paths
model_paths = {
    'Path': {
        '3 hours': 'lr_3H_lat_lon.pkl',
        '6 hours': 'lr_6H_lat_lon.pkl',
        '9 hours': 'lr_9H_lat_lon.pkl',
        '12 hours': 'lr_12H_lat_lon.pkl',
        '15 hours': 'lr_15H_lat_lon.pkl',
        '18 hours': 'lr_18H_lat_lon.pkl',
        '21 hours': 'lr_21H_lat_lon.pkl',
        '24 hours': 'lr_24H_lat_lon.pkl',
        '27 hours': 'lr_27H_lat_lon.pkl',
        '30 hours': 'lr_30H_lat_lon.pkl',
        '33 hours': 'lr_33H_lat_lon.pkl',
        '36 hours': 'lr_36H_lat_lon.pkl'
    }
}

# Define scaler paths
scaler_paths = {
    'Path': {
        '3 hours': 'lr_3H_lat_lon_scaler.pkl',
        '6 hours': 'lr_6H_lat_lon_scaler.pkl',
        '9 hours': 'lr_9H_lat_lon_scaler.pkl',
        '12 hours': 'lr_12H_lat_lon_scaler.pkl',
        '15 hours': 'lr_15H_lat_lon_scaler.pkl',
        '18 hours': 'lr_18H_lat_lon_scaler.pkl',
        '24 hours': 'lr_24H_lat_lon_scaler.pkl',
        '27 hours': 'lr_27H_lat_lon_scaler.pkl',
        '30 hours': 'lr_30H_lat_lon_scaler.pkl',
        '33 hours': 'lr_33H_lat_lon_scaler.pkl',
        '36 hours': 'lr_36H_lat_lon_scaler.pkl'
    }
}

# Load model and scaler based on time interval
def load_model(time_interval):
    model = joblib.load(model_paths['Path'][time_interval])
    scaler = joblib.load(scaler_paths['Path'][time_interval])
    return model, scaler

def process_input(input_data, scaler):
    input_data = np.array(input_data).reshape(-1, 7)
    processed_data = input_data[:2].reshape(1, -1)
    processed_data = scaler.transform(processed_data)
    return processed_data

def predict_path(time_interval, input_data):
    model, scaler = load_model(time_interval)
    processed_data = process_input(input_data, scaler)
    prediction = model.predict(processed_data)
    
    # Create DataFrame for predictions
    df_predictions = pd.DataFrame(prediction, columns=['LAT', 'LON'])
    df_predictions['Time'] = [time_interval]
    return df_predictions

# Function to plot predictions on a folium map and return the HTML representation
def plot_predictions_on_map(df_predictions):
    latitudes = df_predictions['LAT'].tolist()
    longitudes = df_predictions['LON'].tolist()

    m = folium.Map(location=[latitudes[0], longitudes[0]], zoom_start=6)
    locations = list(zip(latitudes, longitudes))

    for lat, lon in locations:
        folium.Marker([lat, lon]).add_to(m)

    folium.PolyLine(locations, color='blue', weight=2.5, opacity=0.7).add_to(m)
    return m

# Streamlit App
def main():
    st.title("Cyclone Path Prediction")
    st.write("Input current and previous cyclone data to predict the path and visualize it on a map.")

    # User inputs
    time_interval = st.selectbox("Select Prediction Time Interval", [
        '3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', 
        '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'
    ])

    previous_lat = st.number_input("Previous Latitude", format="%f")
    previous_lon = st.number_input("Previous Longitude", format="%f")
    previous_speed = st.number_input("Previous Speed", format="%f")
    previous_year = st.number_input("Previous Year", format="%d")
    previous_month = st.number_input("Previous Month", format="%d")
    previous_day = st.number_input("Previous Day", format="%d")
    previous_hour = st.number_input("Previous Hour", format="%d")

    present_lat = st.number_input("Present Latitude", format="%f")
    present_lon = st.number_input("Present Longitude", format="%f")
    present_speed = st.number_input("Present Speed", format="%f")
    present_year = st.number_input("Present Year", format="%d")
    present_month = st.number_input("Present Month", format="%d")
    present_day = st.number_input("Present Day", format="%d")
    present_hour = st.number_input("Present Hour", format="%d")

    if st.button("Predict"):
        # Process input into array format
        previous_data = [previous_lat, previous_lon, previous_speed, previous_year, previous_month, previous_day, previous_hour]
        present_data = [present_lat, present_lon, present_speed, present_year, present_month, present_day, present_hour]
        input_data = [previous_data, present_data]
        
        # Predict path
        df_predictions = predict_path(time_interval, input_data)

        # Display predicted path DataFrame
        st.write("Predicted Path DataFrame:")
        st.write(df_predictions)

        # Plot map with predictions
        st.write("Cyclone Path Map:")
        map_ = plot_predictions_on_map(df_predictions)
        folium_static(map_)

if __name__ == "__main__":
    main()