AdalAbilbekov's picture
First commit
ae8e1dd
raw
history blame
29.6 kB
import math
import random
import torch
from model import monotonic_align
from model.base import BaseModule
from model.text_encoder import TextEncoder
from model.diffusion import Diffusion
from model.utils import sequence_mask, generate_path, duration_loss, fix_len_compatibility
class GradTTSWithEmo(BaseModule):
def __init__(self, n_vocab=148, n_spks=1,n_emos=5, spk_emb_dim=64,
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000,
use_classifier_free=False, dummy_spk_rate=0.5,
**kwargs):
super(GradTTSWithEmo, self).__init__()
self.n_vocab = n_vocab
self.n_spks = n_spks
self.n_emos = n_emos
self.spk_emb_dim = spk_emb_dim
self.n_enc_channels = n_enc_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.n_heads = n_heads
self.n_enc_layers = n_enc_layers
self.enc_kernel = enc_kernel
self.enc_dropout = enc_dropout
self.window_size = window_size
self.n_feats = n_feats
self.dec_dim = dec_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.use_classifier_free = use_classifier_free
# if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
self.emo_emb = torch.nn.Embedding(n_emos, spk_emb_dim)
self.merge_spk_emo = torch.nn.Sequential(
torch.nn.Linear(spk_emb_dim*2, spk_emb_dim),
torch.nn.ReLU(),
torch.nn.Linear(spk_emb_dim, spk_emb_dim)
)
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
filter_channels, filter_channels_dp, n_heads,
n_enc_layers, enc_kernel, enc_dropout, window_size,
spk_emb_dim=spk_emb_dim, n_spks=n_spks)
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
if self.use_classifier_free:
self.dummy_xv = torch.nn.Parameter(torch.randn(size=(spk_emb_dim, )))
self.dummy_rate = dummy_spk_rate
print(f"Using classifier free with rate {self.dummy_rate}")
@torch.no_grad()
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_free_guidance=1., force_dur=None):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
Usually, does not provide synthesis improvements.
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
"""
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
emo = self.emo_emb(emo)
if self.use_classifier_free:
emo = emo / torch.sqrt(torch.sum(emo**2, dim=1, keepdim=True)) # unit norm
spk_merged = self.merge_spk_emo(torch.cat([spk, emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
if force_dur is not None:
w_ceil = force_dur.unsqueeze(1) # [1, 1, Ltext]
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# print(z)
# Generate sample by performing reverse dynamics
unit_dummy_emo = self.dummy_xv / torch.sqrt(torch.sum(self.dummy_xv**2)) if self.use_classifier_free else None
dummy_spk = self.merge_spk_emo(torch.cat([spk, unit_dummy_emo.unsqueeze(0).repeat(len(spk), 1)], dim=-1)) if self.use_classifier_free else None
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
use_classifier_free=self.use_classifier_free,
classifier_free_guidance=classifier_free_guidance,
dummy_spk=dummy_spk)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
# print("w shape is ", w.shape)
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo=emo, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo=emo, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_two_mixture(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_mixture(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_two_mixture_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_mixture_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, emo=None, out_size=None, use_gt_dur=False, durs=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
y (torch.Tensor): batch of corresponding mel-spectrograms.
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
use_gt_dur: bool
durs: gt duration
"""
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths]) # y: B, 80, L
spk = self.spk_emb(spk)
emo = self.emo_emb(emo) # [B, D]
if self.use_classifier_free:
emo = emo / torch.sqrt(torch.sum(emo ** 2, dim=1, keepdim=True)) # unit norm
use_dummy_per_sample = torch.distributions.Binomial(1, torch.tensor(
[self.dummy_rate] * len(emo))).sample().bool() # [b, ] True/False where True accords to rate
emo[use_dummy_per_sample] = (self.dummy_xv / torch.sqrt(
torch.sum(self.dummy_xv ** 2))) # substitute with dummy xv(unit norm too)
spk = self.merge_spk_emo(torch.cat([spk, emo], dim=-1)) # [B, D]
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
if use_gt_dur:
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
else:
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
# it's actually the log likelihood of y given the Gaussian with (mu_x, I)
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# print(attn.shape)
# Cut a small segment of mel-spectrogram in order to increase batch size
if not isinstance(out_size, type(None)):
clip_size = min(out_size, y_max_length) # when out_size > max length, do not actually perform clipping
clip_size = -fix_len_compatibility(-clip_size) # this is to ensure dividable
max_offset = (y_lengths - clip_size).clamp(0)
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
out_offset = torch.LongTensor([
torch.tensor(random.choice(range(start, end)) if end > start else 0)
for start, end in offset_ranges
]).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], clip_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, clip_size, dtype=y.dtype, device=y.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = clip_size + (y_lengths[i] - clip_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut # attn -> [B, text_length, cut_length]. It does not begin from top left corner
y = y_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) # here mu_x is not cut.
mu_y = mu_y.transpose(1, 2) # B, 80, cut_length
# Compute loss of score-based decoder
# print(y.shape, y_mask.shape, mu_y.shape)
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
# Compute loss between aligned encoder outputs and mel-spectrogram
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
return dur_loss, prior_loss, diff_loss
class GradTTSXvector(BaseModule):
def __init__(self, n_vocab=148, spk_emb_dim=64,
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000, xvector_dim=512, **kwargs):
super(GradTTSXvector, self).__init__()
self.n_vocab = n_vocab
# self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.n_enc_channels = n_enc_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.n_heads = n_heads
self.n_enc_layers = n_enc_layers
self.enc_kernel = enc_kernel
self.enc_dropout = enc_dropout
self.window_size = window_size
self.n_feats = n_feats
self.dec_dim = dec_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.xvector_proj = torch.nn.Linear(xvector_dim, spk_emb_dim)
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
filter_channels, filter_channels_dp, n_heads,
n_enc_layers, enc_kernel, enc_dropout, window_size,
spk_emb_dim=spk_emb_dim, n_spks=999) # NOTE: not important `n_spk`
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
@torch.no_grad()
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
Usually, does not provide synthesis improvements.
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
spk: actually the xvectors
"""
x, x_lengths = self.relocate_input([x, x_lengths])
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, out_size=None, use_gt_dur=False, durs=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotonic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
y (torch.Tensor): batch of corresponding mel-spectrograms.
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
spk: xvector
use_gt_dur: bool
durs: gt duration
"""
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths])
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
if not use_gt_dur:
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
else:
with torch.no_grad():
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# print(attn.shape)
# Cut a small segment of mel-spectrogram in order to increase batch size
if not isinstance(out_size, type(None)):
max_offset = (y_lengths - out_size).clamp(0)
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
out_offset = torch.LongTensor([
torch.tensor(random.choice(range(start, end)) if end > start else 0)
for start, end in offset_ranges
]).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut
y = y_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
# Compute loss of score-based decoder
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
# Compute loss between aligned encoder outputs and mel-spectrogram
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
return dur_loss, prior_loss, diff_loss