Spaces:
Runtime error
Runtime error
import math | |
import random | |
import torch | |
from model import monotonic_align | |
from model.base import BaseModule | |
from model.text_encoder import TextEncoder | |
from model.diffusion import Diffusion | |
from model.utils import sequence_mask, generate_path, duration_loss, fix_len_compatibility | |
class GradTTSWithEmo(BaseModule): | |
def __init__(self, n_vocab=148, n_spks=1,n_emos=5, spk_emb_dim=64, | |
n_enc_channels=192, filter_channels=768, filter_channels_dp=256, | |
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4, | |
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000, | |
use_classifier_free=False, dummy_spk_rate=0.5, | |
**kwargs): | |
super(GradTTSWithEmo, self).__init__() | |
self.n_vocab = n_vocab | |
self.n_spks = n_spks | |
self.n_emos = n_emos | |
self.spk_emb_dim = spk_emb_dim | |
self.n_enc_channels = n_enc_channels | |
self.filter_channels = filter_channels | |
self.filter_channels_dp = filter_channels_dp | |
self.n_heads = n_heads | |
self.n_enc_layers = n_enc_layers | |
self.enc_kernel = enc_kernel | |
self.enc_dropout = enc_dropout | |
self.window_size = window_size | |
self.n_feats = n_feats | |
self.dec_dim = dec_dim | |
self.beta_min = beta_min | |
self.beta_max = beta_max | |
self.pe_scale = pe_scale | |
self.use_classifier_free = use_classifier_free | |
# if n_spks > 1: | |
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim) | |
self.emo_emb = torch.nn.Embedding(n_emos, spk_emb_dim) | |
self.merge_spk_emo = torch.nn.Sequential( | |
torch.nn.Linear(spk_emb_dim*2, spk_emb_dim), | |
torch.nn.ReLU(), | |
torch.nn.Linear(spk_emb_dim, spk_emb_dim) | |
) | |
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels, | |
filter_channels, filter_channels_dp, n_heads, | |
n_enc_layers, enc_kernel, enc_dropout, window_size, | |
spk_emb_dim=spk_emb_dim, n_spks=n_spks) | |
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale) | |
if self.use_classifier_free: | |
self.dummy_xv = torch.nn.Parameter(torch.randn(size=(spk_emb_dim, ))) | |
self.dummy_rate = dummy_spk_rate | |
print(f"Using classifier free with rate {self.dummy_rate}") | |
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None, | |
length_scale=1.0, classifier_free_guidance=1., force_dur=None): | |
""" | |
Generates mel-spectrogram from text. Returns: | |
1. encoder outputs | |
2. decoder outputs | |
3. generated alignment | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
n_timesteps (int): number of steps to use for reverse diffusion in decoder. | |
temperature (float, optional): controls variance of terminal distribution. | |
stoc (bool, optional): flag that adds stochastic term to the decoder sampler. | |
Usually, does not provide synthesis improvements. | |
length_scale (float, optional): controls speech pace. | |
Increase value to slow down generated speech and vice versa. | |
""" | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
emo = self.emo_emb(emo) | |
if self.use_classifier_free: | |
emo = emo / torch.sqrt(torch.sum(emo**2, dim=1, keepdim=True)) # unit norm | |
spk_merged = self.merge_spk_emo(torch.cat([spk, emo], dim=-1)) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
if force_dur is not None: | |
w_ceil = force_dur.unsqueeze(1) # [1, 1, Ltext] | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# print(z) | |
# Generate sample by performing reverse dynamics | |
unit_dummy_emo = self.dummy_xv / torch.sqrt(torch.sum(self.dummy_xv**2)) if self.use_classifier_free else None | |
dummy_spk = self.merge_spk_emo(torch.cat([spk, unit_dummy_emo.unsqueeze(0).repeat(len(spk), 1)], dim=-1)) if self.use_classifier_free else None | |
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk_merged, | |
use_classifier_free=self.use_classifier_free, | |
classifier_free_guidance=classifier_free_guidance, | |
dummy_spk=dummy_spk) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def classifier_guidance_decode(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None, | |
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'): | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder. | |
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1)) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged) | |
w = torch.exp(logw) * x_mask | |
# print("w shape is ", w.shape) | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' : | |
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder.classifier_decode(z, y_mask, mu_y, n_timesteps, stoc, spk_merged, | |
classifier_func, guidance, | |
control_emo=emo, classifier_type=classifier_type) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def classifier_guidance_decode_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None, | |
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'): | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder. | |
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1)) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' : | |
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder.classifier_decode_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged, | |
classifier_func, guidance, | |
control_emo=emo, classifier_type=classifier_type) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def classifier_guidance_decode_two_mixture(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None, | |
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'): | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder. | |
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1)) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' : | |
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder.classifier_decode_mixture(z, y_mask, mu_y, n_timesteps, stoc, spk_merged, | |
classifier_func, guidance, | |
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def classifier_guidance_decode_two_mixture_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None, | |
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'): | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
# Get speaker embedding | |
spk = self.spk_emb(spk) | |
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder. | |
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1)) | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' : | |
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder.classifier_decode_mixture_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged, | |
classifier_func, guidance, | |
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, emo=None, out_size=None, use_gt_dur=False, durs=None): | |
""" | |
Computes 3 losses: | |
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS). | |
2. prior loss: loss between mel-spectrogram and encoder outputs. | |
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder. | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
y (torch.Tensor): batch of corresponding mel-spectrograms. | |
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch. | |
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained. | |
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size. | |
use_gt_dur: bool | |
durs: gt duration | |
""" | |
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths]) # y: B, 80, L | |
spk = self.spk_emb(spk) | |
emo = self.emo_emb(emo) # [B, D] | |
if self.use_classifier_free: | |
emo = emo / torch.sqrt(torch.sum(emo ** 2, dim=1, keepdim=True)) # unit norm | |
use_dummy_per_sample = torch.distributions.Binomial(1, torch.tensor( | |
[self.dummy_rate] * len(emo))).sample().bool() # [b, ] True/False where True accords to rate | |
emo[use_dummy_per_sample] = (self.dummy_xv / torch.sqrt( | |
torch.sum(self.dummy_xv ** 2))) # substitute with dummy xv(unit norm too) | |
spk = self.merge_spk_emo(torch.cat([spk, emo], dim=-1)) # [B, D] | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk) | |
y_max_length = y.shape[-1] | |
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram | |
if use_gt_dur: | |
attn = generate_path(durs, attn_mask.squeeze(1)).detach() | |
else: | |
with torch.no_grad(): | |
const = -0.5 * math.log(2 * math.pi) * self.n_feats | |
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) | |
y_square = torch.matmul(factor.transpose(1, 2), y ** 2) | |
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) | |
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1) | |
log_prior = y_square - y_mu_double + mu_square + const | |
# it's actually the log likelihood of y given the Gaussian with (mu_x, I) | |
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) | |
attn = attn.detach() | |
# Compute loss between predicted log-scaled durations and those obtained from MAS | |
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask | |
dur_loss = duration_loss(logw, logw_, x_lengths) | |
# print(attn.shape) | |
# Cut a small segment of mel-spectrogram in order to increase batch size | |
if not isinstance(out_size, type(None)): | |
clip_size = min(out_size, y_max_length) # when out_size > max length, do not actually perform clipping | |
clip_size = -fix_len_compatibility(-clip_size) # this is to ensure dividable | |
max_offset = (y_lengths - clip_size).clamp(0) | |
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) | |
out_offset = torch.LongTensor([ | |
torch.tensor(random.choice(range(start, end)) if end > start else 0) | |
for start, end in offset_ranges | |
]).to(y_lengths) | |
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], clip_size, dtype=attn.dtype, device=attn.device) | |
y_cut = torch.zeros(y.shape[0], self.n_feats, clip_size, dtype=y.dtype, device=y.device) | |
y_cut_lengths = [] | |
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)): | |
y_cut_length = clip_size + (y_lengths[i] - clip_size).clamp(None, 0) | |
y_cut_lengths.append(y_cut_length) | |
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length | |
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper] | |
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper] | |
y_cut_lengths = torch.LongTensor(y_cut_lengths) | |
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask) | |
attn = attn_cut # attn -> [B, text_length, cut_length]. It does not begin from top left corner | |
y = y_cut | |
y_mask = y_cut_mask | |
# Align encoded text with mel-spectrogram and get mu_y segment | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) # here mu_x is not cut. | |
mu_y = mu_y.transpose(1, 2) # B, 80, cut_length | |
# Compute loss of score-based decoder | |
# print(y.shape, y_mask.shape, mu_y.shape) | |
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk) | |
# Compute loss between aligned encoder outputs and mel-spectrogram | |
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask) | |
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats) | |
return dur_loss, prior_loss, diff_loss | |
class GradTTSXvector(BaseModule): | |
def __init__(self, n_vocab=148, spk_emb_dim=64, | |
n_enc_channels=192, filter_channels=768, filter_channels_dp=256, | |
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4, | |
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000, xvector_dim=512, **kwargs): | |
super(GradTTSXvector, self).__init__() | |
self.n_vocab = n_vocab | |
# self.n_spks = n_spks | |
self.spk_emb_dim = spk_emb_dim | |
self.n_enc_channels = n_enc_channels | |
self.filter_channels = filter_channels | |
self.filter_channels_dp = filter_channels_dp | |
self.n_heads = n_heads | |
self.n_enc_layers = n_enc_layers | |
self.enc_kernel = enc_kernel | |
self.enc_dropout = enc_dropout | |
self.window_size = window_size | |
self.n_feats = n_feats | |
self.dec_dim = dec_dim | |
self.beta_min = beta_min | |
self.beta_max = beta_max | |
self.pe_scale = pe_scale | |
self.xvector_proj = torch.nn.Linear(xvector_dim, spk_emb_dim) | |
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels, | |
filter_channels, filter_channels_dp, n_heads, | |
n_enc_layers, enc_kernel, enc_dropout, window_size, | |
spk_emb_dim=spk_emb_dim, n_spks=999) # NOTE: not important `n_spk` | |
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale) | |
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0): | |
""" | |
Generates mel-spectrogram from text. Returns: | |
1. encoder outputs | |
2. decoder outputs | |
3. generated alignment | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
n_timesteps (int): number of steps to use for reverse diffusion in decoder. | |
temperature (float, optional): controls variance of terminal distribution. | |
stoc (bool, optional): flag that adds stochastic term to the decoder sampler. | |
Usually, does not provide synthesis improvements. | |
length_scale (float, optional): controls speech pace. | |
Increase value to slow down generated speech and vice versa. | |
spk: actually the xvectors | |
""" | |
x, x_lengths = self.relocate_input([x, x_lengths]) | |
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk) | |
w = torch.exp(logw) * x_mask | |
w_ceil = torch.ceil(w) * length_scale | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_max_length = int(y_lengths.max()) | |
y_max_length_ = fix_len_compatibility(y_max_length) | |
# Using obtained durations `w` construct alignment map `attn` | |
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) | |
# Align encoded text and get mu_y | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
encoder_outputs = mu_y[:, :, :y_max_length] | |
# Sample latent representation from terminal distribution N(mu_y, I) | |
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk) | |
decoder_outputs = decoder_outputs[:, :, :y_max_length] | |
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length] | |
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, out_size=None, use_gt_dur=False, durs=None): | |
""" | |
Computes 3 losses: | |
1. duration loss: loss between predicted token durations and those extracted by Monotonic Alignment Search (MAS). | |
2. prior loss: loss between mel-spectrogram and encoder outputs. | |
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder. | |
Args: | |
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. | |
x_lengths (torch.Tensor): lengths of texts in batch. | |
y (torch.Tensor): batch of corresponding mel-spectrograms. | |
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch. | |
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained. | |
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size. | |
spk: xvector | |
use_gt_dur: bool | |
durs: gt duration | |
""" | |
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths]) | |
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding | |
# Get encoder_outputs `mu_x` and log-scaled token durations `logw` | |
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk) | |
y_max_length = y.shape[-1] | |
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram | |
if not use_gt_dur: | |
with torch.no_grad(): | |
const = -0.5 * math.log(2 * math.pi) * self.n_feats | |
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) | |
y_square = torch.matmul(factor.transpose(1, 2), y ** 2) | |
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) | |
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1) | |
log_prior = y_square - y_mu_double + mu_square + const | |
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) | |
attn = attn.detach() | |
else: | |
with torch.no_grad(): | |
attn = generate_path(durs, attn_mask.squeeze(1)).detach() | |
# Compute loss between predicted log-scaled durations and those obtained from MAS | |
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask | |
dur_loss = duration_loss(logw, logw_, x_lengths) | |
# print(attn.shape) | |
# Cut a small segment of mel-spectrogram in order to increase batch size | |
if not isinstance(out_size, type(None)): | |
max_offset = (y_lengths - out_size).clamp(0) | |
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) | |
out_offset = torch.LongTensor([ | |
torch.tensor(random.choice(range(start, end)) if end > start else 0) | |
for start, end in offset_ranges | |
]).to(y_lengths) | |
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device) | |
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device) | |
y_cut_lengths = [] | |
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)): | |
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0) | |
y_cut_lengths.append(y_cut_length) | |
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length | |
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper] | |
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper] | |
y_cut_lengths = torch.LongTensor(y_cut_lengths) | |
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask) | |
attn = attn_cut | |
y = y_cut | |
y_mask = y_cut_mask | |
# Align encoded text with mel-spectrogram and get mu_y segment | |
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) | |
mu_y = mu_y.transpose(1, 2) | |
# Compute loss of score-based decoder | |
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk) | |
# Compute loss between aligned encoder outputs and mel-spectrogram | |
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask) | |
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats) | |
return dur_loss, prior_loss, diff_loss | |