File size: 2,140 Bytes
09bda19
 
63015c6
 
09bda19
63015c6
 
 
 
 
09bda19
93dc904
 
 
 
 
63015c6
 
 
09bda19
63015c6
 
 
 
 
 
 
 
 
 
 
09bda19
 
63015c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09bda19
 
cb2d5dc
09bda19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.basics import *
from fastai.vision import models
from fastai.vision.all import *
from fastai.metrics import *
from fastai.data.all import *
from fastai.callback import *
import PIL
import torchvision.transforms as transforms

from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="Alesteba/deep_model_03", filename="unet.pth")

# load model

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = torch.jit.load("pract3.pth")
model = model.cpu()

def transform_image(image):
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    
    return my_transforms(image_aux).unsqueeze(0).to(device)

def predict(img):
    img = PIL.Image.fromarray(img, "RGB")
    image = transforms.Resize((480,640))(img)
    tensor = transform_image(image=image) 
    
    model.to(device)
    with torch.no_grad():
        outputs = model(tensor)
    
    outputs = torch.argmax(outputs,1)
    mask = np.array(outputs.cpu())
    mask[mask==1]=255
    mask[mask==2]=150
    mask[mask==3]=76
    mask[mask==4]=29
    mask=np.reshape(mask,(480,640))
    return Image.fromarray(mask.astype('uint8'))

# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
# repo_id = "Alesteba/deep_model_03"

# learner = from_pretrained_fastai(repo_id)
# labels = learner.dls.vocab



# # Definimos una función que se encarga de llevar a cabo las predicciones
# def predict(img):
#     #img = PILImage.create(img)
#     pred,pred_idx,probs = learner.predict(img)
#     return {labels[i]: float(probs[i]) for i in range(len(labels))}
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['color_154.jpg','color_155.jpg']).launch(share=False)