Spaces:
Build error
Build error
import numpy as np | |
import torch | |
from mmcv.runner import force_fp32 | |
from mmdet.core import multi_apply, multiclass_nms | |
from mmdet.core.bbox.iou_calculators import bbox_overlaps | |
from mmdet.models import HEADS | |
from mmdet.models.dense_heads import ATSSHead | |
EPS = 1e-12 | |
try: | |
import sklearn.mixture as skm | |
except ImportError: | |
skm = None | |
def levels_to_images(mlvl_tensor): | |
"""Concat multi-level feature maps by image. | |
[feature_level0, feature_level1...] -> [feature_image0, feature_image1...] | |
Convert the shape of each element in mlvl_tensor from (N, C, H, W) to | |
(N, H*W , C), then split the element to N elements with shape (H*W, C), and | |
concat elements in same image of all level along first dimension. | |
Args: | |
mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from | |
corresponding level. Each element is of shape (N, C, H, W) | |
Returns: | |
list[torch.Tensor]: A list that contains N tensors and each tensor is | |
of shape (num_elements, C) | |
""" | |
batch_size = mlvl_tensor[0].size(0) | |
batch_list = [[] for _ in range(batch_size)] | |
channels = mlvl_tensor[0].size(1) | |
for t in mlvl_tensor: | |
t = t.permute(0, 2, 3, 1) | |
t = t.view(batch_size, -1, channels).contiguous() | |
for img in range(batch_size): | |
batch_list[img].append(t[img]) | |
return [torch.cat(item, 0) for item in batch_list] | |
class PAAHead(ATSSHead): | |
"""Head of PAAAssignment: Probabilistic Anchor Assignment with IoU | |
Prediction for Object Detection. | |
Code is modified from the `official github repo | |
<https://github.com/kkhoot/PAA/blob/master/paa_core | |
/modeling/rpn/paa/loss.py>`_. | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2007.08103>`_ . | |
Args: | |
topk (int): Select topk samples with smallest loss in | |
each level. | |
score_voting (bool): Whether to use score voting in post-process. | |
covariance_type : String describing the type of covariance parameters | |
to be used in :class:`sklearn.mixture.GaussianMixture`. | |
It must be one of: | |
- 'full': each component has its own general covariance matrix | |
- 'tied': all components share the same general covariance matrix | |
- 'diag': each component has its own diagonal covariance matrix | |
- 'spherical': each component has its own single variance | |
Default: 'diag'. From 'full' to 'spherical', the gmm fitting | |
process is faster yet the performance could be influenced. For most | |
cases, 'diag' should be a good choice. | |
""" | |
def __init__(self, | |
*args, | |
topk=9, | |
score_voting=True, | |
covariance_type='diag', | |
**kwargs): | |
# topk used in paa reassign process | |
self.topk = topk | |
self.with_score_voting = score_voting | |
self.covariance_type = covariance_type | |
super(PAAHead, self).__init__(*args, **kwargs) | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
iou_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
iou_preds (list[Tensor]): iou_preds for each scale | |
level with shape (N, num_anchors * 1, H, W) | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (list[Tensor] | None): Specify which bounding | |
boxes can be ignored when are computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss gmm_assignment. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.anchor_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=label_channels, | |
) | |
(labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, | |
pos_gt_index) = cls_reg_targets | |
cls_scores = levels_to_images(cls_scores) | |
cls_scores = [ | |
item.reshape(-1, self.cls_out_channels) for item in cls_scores | |
] | |
bbox_preds = levels_to_images(bbox_preds) | |
bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] | |
iou_preds = levels_to_images(iou_preds) | |
iou_preds = [item.reshape(-1, 1) for item in iou_preds] | |
pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, | |
cls_scores, bbox_preds, labels, | |
labels_weight, bboxes_target, | |
bboxes_weight, pos_inds) | |
with torch.no_grad(): | |
reassign_labels, reassign_label_weight, \ | |
reassign_bbox_weights, num_pos = multi_apply( | |
self.paa_reassign, | |
pos_losses_list, | |
labels, | |
labels_weight, | |
bboxes_weight, | |
pos_inds, | |
pos_gt_index, | |
anchor_list) | |
num_pos = sum(num_pos) | |
# convert all tensor list to a flatten tensor | |
cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) | |
bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) | |
iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) | |
labels = torch.cat(reassign_labels, 0).view(-1) | |
flatten_anchors = torch.cat( | |
[torch.cat(item, 0) for item in anchor_list]) | |
labels_weight = torch.cat(reassign_label_weight, 0).view(-1) | |
bboxes_target = torch.cat(bboxes_target, | |
0).view(-1, bboxes_target[0].size(-1)) | |
pos_inds_flatten = ((labels >= 0) | |
& | |
(labels < self.num_classes)).nonzero().reshape(-1) | |
losses_cls = self.loss_cls( | |
cls_scores, | |
labels, | |
labels_weight, | |
avg_factor=max(num_pos, len(img_metas))) # avoid num_pos=0 | |
if num_pos: | |
pos_bbox_pred = self.bbox_coder.decode( | |
flatten_anchors[pos_inds_flatten], | |
bbox_preds[pos_inds_flatten]) | |
pos_bbox_target = bboxes_target[pos_inds_flatten] | |
iou_target = bbox_overlaps( | |
pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) | |
losses_iou = self.loss_centerness( | |
iou_preds[pos_inds_flatten], | |
iou_target.unsqueeze(-1), | |
avg_factor=num_pos) | |
losses_bbox = self.loss_bbox( | |
pos_bbox_pred, | |
pos_bbox_target, | |
iou_target.clamp(min=EPS), | |
avg_factor=iou_target.sum()) | |
else: | |
losses_iou = iou_preds.sum() * 0 | |
losses_bbox = bbox_preds.sum() * 0 | |
return dict( | |
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) | |
def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight, | |
bbox_target, bbox_weight, pos_inds): | |
"""Calculate loss of all potential positive samples obtained from first | |
match process. | |
Args: | |
anchors (list[Tensor]): Anchors of each scale. | |
cls_score (Tensor): Box scores of single image with shape | |
(num_anchors, num_classes) | |
bbox_pred (Tensor): Box energies / deltas of single image | |
with shape (num_anchors, 4) | |
label (Tensor): classification target of each anchor with | |
shape (num_anchors,) | |
label_weight (Tensor): Classification loss weight of each | |
anchor with shape (num_anchors). | |
bbox_target (dict): Regression target of each anchor with | |
shape (num_anchors, 4). | |
bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
pos_inds (Tensor): Index of all positive samples got from | |
first assign process. | |
Returns: | |
Tensor: Losses of all positive samples in single image. | |
""" | |
if not len(pos_inds): | |
return cls_score.new([]), | |
anchors_all_level = torch.cat(anchors, 0) | |
pos_scores = cls_score[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_label = label[pos_inds] | |
pos_label_weight = label_weight[pos_inds] | |
pos_bbox_target = bbox_target[pos_inds] | |
pos_bbox_weight = bbox_weight[pos_inds] | |
pos_anchors = anchors_all_level[pos_inds] | |
pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred) | |
# to keep loss dimension | |
loss_cls = self.loss_cls( | |
pos_scores, | |
pos_label, | |
pos_label_weight, | |
avg_factor=self.loss_cls.loss_weight, | |
reduction_override='none') | |
loss_bbox = self.loss_bbox( | |
pos_bbox_pred, | |
pos_bbox_target, | |
pos_bbox_weight, | |
avg_factor=self.loss_cls.loss_weight, | |
reduction_override='none') | |
loss_cls = loss_cls.sum(-1) | |
pos_loss = loss_bbox + loss_cls | |
return pos_loss, | |
def paa_reassign(self, pos_losses, label, label_weight, bbox_weight, | |
pos_inds, pos_gt_inds, anchors): | |
"""Fit loss to GMM distribution and separate positive, ignore, negative | |
samples again with GMM model. | |
Args: | |
pos_losses (Tensor): Losses of all positive samples in | |
single image. | |
label (Tensor): classification target of each anchor with | |
shape (num_anchors,) | |
label_weight (Tensor): Classification loss weight of each | |
anchor with shape (num_anchors). | |
bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
pos_inds (Tensor): Index of all positive samples got from | |
first assign process. | |
pos_gt_inds (Tensor): Gt_index of all positive samples got | |
from first assign process. | |
anchors (list[Tensor]): Anchors of each scale. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- label (Tensor): classification target of each anchor after | |
paa assign, with shape (num_anchors,) | |
- label_weight (Tensor): Classification loss weight of each | |
anchor after paa assign, with shape (num_anchors). | |
- bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
- num_pos (int): The number of positive samples after paa | |
assign. | |
""" | |
if not len(pos_inds): | |
return label, label_weight, bbox_weight, 0 | |
label = label.clone() | |
label_weight = label_weight.clone() | |
bbox_weight = bbox_weight.clone() | |
num_gt = pos_gt_inds.max() + 1 | |
num_level = len(anchors) | |
num_anchors_each_level = [item.size(0) for item in anchors] | |
num_anchors_each_level.insert(0, 0) | |
inds_level_interval = np.cumsum(num_anchors_each_level) | |
pos_level_mask = [] | |
for i in range(num_level): | |
mask = (pos_inds >= inds_level_interval[i]) & ( | |
pos_inds < inds_level_interval[i + 1]) | |
pos_level_mask.append(mask) | |
pos_inds_after_paa = [label.new_tensor([])] | |
ignore_inds_after_paa = [label.new_tensor([])] | |
for gt_ind in range(num_gt): | |
pos_inds_gmm = [] | |
pos_loss_gmm = [] | |
gt_mask = pos_gt_inds == gt_ind | |
for level in range(num_level): | |
level_mask = pos_level_mask[level] | |
level_gt_mask = level_mask & gt_mask | |
value, topk_inds = pos_losses[level_gt_mask].topk( | |
min(level_gt_mask.sum(), self.topk), largest=False) | |
pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds]) | |
pos_loss_gmm.append(value) | |
pos_inds_gmm = torch.cat(pos_inds_gmm) | |
pos_loss_gmm = torch.cat(pos_loss_gmm) | |
# fix gmm need at least two sample | |
if len(pos_inds_gmm) < 2: | |
continue | |
device = pos_inds_gmm.device | |
pos_loss_gmm, sort_inds = pos_loss_gmm.sort() | |
pos_inds_gmm = pos_inds_gmm[sort_inds] | |
pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy() | |
min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max() | |
means_init = np.array([min_loss, max_loss]).reshape(2, 1) | |
weights_init = np.array([0.5, 0.5]) | |
precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1) # full | |
if self.covariance_type == 'spherical': | |
precisions_init = precisions_init.reshape(2) | |
elif self.covariance_type == 'diag': | |
precisions_init = precisions_init.reshape(2, 1) | |
elif self.covariance_type == 'tied': | |
precisions_init = np.array([[1.0]]) | |
if skm is None: | |
raise ImportError('Please run "pip install sklearn" ' | |
'to install sklearn first.') | |
gmm = skm.GaussianMixture( | |
2, | |
weights_init=weights_init, | |
means_init=means_init, | |
precisions_init=precisions_init, | |
covariance_type=self.covariance_type) | |
gmm.fit(pos_loss_gmm) | |
gmm_assignment = gmm.predict(pos_loss_gmm) | |
scores = gmm.score_samples(pos_loss_gmm) | |
gmm_assignment = torch.from_numpy(gmm_assignment).to(device) | |
scores = torch.from_numpy(scores).to(device) | |
pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme( | |
gmm_assignment, scores, pos_inds_gmm) | |
pos_inds_after_paa.append(pos_inds_temp) | |
ignore_inds_after_paa.append(ignore_inds_temp) | |
pos_inds_after_paa = torch.cat(pos_inds_after_paa) | |
ignore_inds_after_paa = torch.cat(ignore_inds_after_paa) | |
reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1) | |
reassign_ids = pos_inds[reassign_mask] | |
label[reassign_ids] = self.num_classes | |
label_weight[ignore_inds_after_paa] = 0 | |
bbox_weight[reassign_ids] = 0 | |
num_pos = len(pos_inds_after_paa) | |
return label, label_weight, bbox_weight, num_pos | |
def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm): | |
"""A general separation scheme for gmm model. | |
It separates a GMM distribution of candidate samples into three | |
parts, 0 1 and uncertain areas, and you can implement other | |
separation schemes by rewriting this function. | |
Args: | |
gmm_assignment (Tensor): The prediction of GMM which is of shape | |
(num_samples,). The 0/1 value indicates the distribution | |
that each sample comes from. | |
scores (Tensor): The probability of sample coming from the | |
fit GMM distribution. The tensor is of shape (num_samples,). | |
pos_inds_gmm (Tensor): All the indexes of samples which are used | |
to fit GMM model. The tensor is of shape (num_samples,) | |
Returns: | |
tuple[Tensor]: The indices of positive and ignored samples. | |
- pos_inds_temp (Tensor): Indices of positive samples. | |
- ignore_inds_temp (Tensor): Indices of ignore samples. | |
""" | |
# The implementation is (c) in Fig.3 in origin paper instead of (b). | |
# You can refer to issues such as | |
# https://github.com/kkhoot/PAA/issues/8 and | |
# https://github.com/kkhoot/PAA/issues/9. | |
fgs = gmm_assignment == 0 | |
pos_inds_temp = fgs.new_tensor([], dtype=torch.long) | |
ignore_inds_temp = fgs.new_tensor([], dtype=torch.long) | |
if fgs.nonzero().numel(): | |
_, pos_thr_ind = scores[fgs].topk(1) | |
pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1] | |
ignore_inds_temp = pos_inds_gmm.new_tensor([]) | |
return pos_inds_temp, ignore_inds_temp | |
def get_targets( | |
self, | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes_list, | |
img_metas, | |
gt_bboxes_ignore_list=None, | |
gt_labels_list=None, | |
label_channels=1, | |
unmap_outputs=True, | |
): | |
"""Get targets for PAA head. | |
This method is almost the same as `AnchorHead.get_targets()`. We direct | |
return the results from _get_targets_single instead map it to levels | |
by images_to_levels function. | |
Args: | |
anchor_list (list[list[Tensor]]): Multi level anchors of each | |
image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, 4). | |
valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
each image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, ) | |
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. | |
img_metas (list[dict]): Meta info of each image. | |
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be | |
ignored. | |
gt_labels_list (list[Tensor]): Ground truth labels of each box. | |
label_channels (int): Channel of label. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- labels (list[Tensor]): Labels of all anchors, each with | |
shape (num_anchors,). | |
- label_weights (list[Tensor]): Label weights of all anchor. | |
each with shape (num_anchors,). | |
- bbox_targets (list[Tensor]): BBox targets of all anchors. | |
each with shape (num_anchors, 4). | |
- bbox_weights (list[Tensor]): BBox weights of all anchors. | |
each with shape (num_anchors, 4). | |
- pos_inds (list[Tensor]): Contains all index of positive | |
sample in all anchor. | |
- gt_inds (list[Tensor]): Contains all gt_index of positive | |
sample in all anchor. | |
""" | |
num_imgs = len(img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
concat_anchor_list = [] | |
concat_valid_flag_list = [] | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) | |
# compute targets for each image | |
if gt_bboxes_ignore_list is None: | |
gt_bboxes_ignore_list = [None for _ in range(num_imgs)] | |
if gt_labels_list is None: | |
gt_labels_list = [None for _ in range(num_imgs)] | |
results = multi_apply( | |
self._get_targets_single, | |
concat_anchor_list, | |
concat_valid_flag_list, | |
gt_bboxes_list, | |
gt_bboxes_ignore_list, | |
gt_labels_list, | |
img_metas, | |
label_channels=label_channels, | |
unmap_outputs=unmap_outputs) | |
(labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds, | |
valid_neg_inds, sampling_result) = results | |
# Due to valid flag of anchors, we have to calculate the real pos_inds | |
# in origin anchor set. | |
pos_inds = [] | |
for i, single_labels in enumerate(labels): | |
pos_mask = (0 <= single_labels) & ( | |
single_labels < self.num_classes) | |
pos_inds.append(pos_mask.nonzero().view(-1)) | |
gt_inds = [item.pos_assigned_gt_inds for item in sampling_result] | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
gt_inds) | |
def _get_targets_single(self, | |
flat_anchors, | |
valid_flags, | |
gt_bboxes, | |
gt_bboxes_ignore, | |
gt_labels, | |
img_meta, | |
label_channels=1, | |
unmap_outputs=True): | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
This method is same as `AnchorHead._get_targets_single()`. | |
""" | |
assert unmap_outputs, 'We must map outputs back to the original' \ | |
'set of anchors in PAAhead' | |
return super(ATSSHead, self)._get_targets_single( | |
flat_anchors, | |
valid_flags, | |
gt_bboxes, | |
gt_bboxes_ignore, | |
gt_labels, | |
img_meta, | |
label_channels=1, | |
unmap_outputs=True) | |
def _get_bboxes(self, | |
cls_scores, | |
bbox_preds, | |
iou_preds, | |
mlvl_anchors, | |
img_shapes, | |
scale_factors, | |
cfg, | |
rescale=False, | |
with_nms=True): | |
"""Transform outputs for a single batch item into labeled boxes. | |
This method is almost same as `ATSSHead._get_bboxes()`. | |
We use sqrt(iou_preds * cls_scores) in NMS process instead of just | |
cls_scores. Besides, score voting is used when `` score_voting`` | |
is set to True. | |
""" | |
assert with_nms, 'PAA only supports "with_nms=True" now' | |
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) | |
batch_size = cls_scores[0].shape[0] | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_iou_preds = [] | |
for cls_score, bbox_pred, iou_preds, anchors in zip( | |
cls_scores, bbox_preds, iou_preds, mlvl_anchors): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
scores = cls_score.permute(0, 2, 3, 1).reshape( | |
batch_size, -1, self.cls_out_channels).sigmoid() | |
bbox_pred = bbox_pred.permute(0, 2, 3, | |
1).reshape(batch_size, -1, 4) | |
iou_preds = iou_preds.permute(0, 2, 3, 1).reshape(batch_size, | |
-1).sigmoid() | |
nms_pre = cfg.get('nms_pre', -1) | |
if nms_pre > 0 and scores.shape[1] > nms_pre: | |
max_scores, _ = (scores * iou_preds[..., None]).sqrt().max(-1) | |
_, topk_inds = max_scores.topk(nms_pre) | |
batch_inds = torch.arange(batch_size).view( | |
-1, 1).expand_as(topk_inds).long() | |
anchors = anchors[topk_inds, :] | |
bbox_pred = bbox_pred[batch_inds, topk_inds, :] | |
scores = scores[batch_inds, topk_inds, :] | |
iou_preds = iou_preds[batch_inds, topk_inds] | |
else: | |
anchors = anchors.expand_as(bbox_pred) | |
bboxes = self.bbox_coder.decode( | |
anchors, bbox_pred, max_shape=img_shapes) | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_iou_preds.append(iou_preds) | |
batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1) | |
if rescale: | |
batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor( | |
scale_factors).unsqueeze(1) | |
batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) | |
# Add a dummy background class to the backend when using sigmoid | |
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0 | |
# BG cat_id: num_class | |
padding = batch_mlvl_scores.new_zeros(batch_size, | |
batch_mlvl_scores.shape[1], 1) | |
batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1) | |
batch_mlvl_iou_preds = torch.cat(mlvl_iou_preds, dim=1) | |
batch_mlvl_nms_scores = (batch_mlvl_scores * | |
batch_mlvl_iou_preds[..., None]).sqrt() | |
det_results = [] | |
for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes, | |
batch_mlvl_nms_scores): | |
det_bbox, det_label = multiclass_nms( | |
mlvl_bboxes, | |
mlvl_scores, | |
cfg.score_thr, | |
cfg.nms, | |
cfg.max_per_img, | |
score_factors=None) | |
if self.with_score_voting and len(det_bbox) > 0: | |
det_bbox, det_label = self.score_voting( | |
det_bbox, det_label, mlvl_bboxes, mlvl_scores, | |
cfg.score_thr) | |
det_results.append(tuple([det_bbox, det_label])) | |
return det_results | |
def score_voting(self, det_bboxes, det_labels, mlvl_bboxes, | |
mlvl_nms_scores, score_thr): | |
"""Implementation of score voting method works on each remaining boxes | |
after NMS procedure. | |
Args: | |
det_bboxes (Tensor): Remaining boxes after NMS procedure, | |
with shape (k, 5), each dimension means | |
(x1, y1, x2, y2, score). | |
det_labels (Tensor): The label of remaining boxes, with shape | |
(k, 1),Labels are 0-based. | |
mlvl_bboxes (Tensor): All boxes before the NMS procedure, | |
with shape (num_anchors,4). | |
mlvl_nms_scores (Tensor): The scores of all boxes which is used | |
in the NMS procedure, with shape (num_anchors, num_class) | |
mlvl_iou_preds (Tensor): The predictions of IOU of all boxes | |
before the NMS procedure, with shape (num_anchors, 1) | |
score_thr (float): The score threshold of bboxes. | |
Returns: | |
tuple: Usually returns a tuple containing voting results. | |
- det_bboxes_voted (Tensor): Remaining boxes after | |
score voting procedure, with shape (k, 5), each | |
dimension means (x1, y1, x2, y2, score). | |
- det_labels_voted (Tensor): Label of remaining bboxes | |
after voting, with shape (num_anchors,). | |
""" | |
candidate_mask = mlvl_nms_scores > score_thr | |
candidate_mask_nonzeros = candidate_mask.nonzero() | |
candidate_inds = candidate_mask_nonzeros[:, 0] | |
candidate_labels = candidate_mask_nonzeros[:, 1] | |
candidate_bboxes = mlvl_bboxes[candidate_inds] | |
candidate_scores = mlvl_nms_scores[candidate_mask] | |
det_bboxes_voted = [] | |
det_labels_voted = [] | |
for cls in range(self.cls_out_channels): | |
candidate_cls_mask = candidate_labels == cls | |
if not candidate_cls_mask.any(): | |
continue | |
candidate_cls_scores = candidate_scores[candidate_cls_mask] | |
candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask] | |
det_cls_mask = det_labels == cls | |
det_cls_bboxes = det_bboxes[det_cls_mask].view( | |
-1, det_bboxes.size(-1)) | |
det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4], | |
candidate_cls_bboxes) | |
for det_ind in range(len(det_cls_bboxes)): | |
single_det_ious = det_candidate_ious[det_ind] | |
pos_ious_mask = single_det_ious > 0.01 | |
pos_ious = single_det_ious[pos_ious_mask] | |
pos_bboxes = candidate_cls_bboxes[pos_ious_mask] | |
pos_scores = candidate_cls_scores[pos_ious_mask] | |
pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) * | |
pos_scores)[:, None] | |
voted_box = torch.sum( | |
pis * pos_bboxes, dim=0) / torch.sum( | |
pis, dim=0) | |
voted_score = det_cls_bboxes[det_ind][-1:][None, :] | |
det_bboxes_voted.append( | |
torch.cat((voted_box[None, :], voted_score), dim=1)) | |
det_labels_voted.append(cls) | |
det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0) | |
det_labels_voted = det_labels.new_tensor(det_labels_voted) | |
return det_bboxes_voted, det_labels_voted | |