File size: 7,957 Bytes
2b935c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import time
import sys

# import openai
import time
# import pandas as pd
import random
import csv
import os
import pickle
import json
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string
from typing import List
import difflib


# import tiktoken

import re
from nltk.tokenize import sent_tokenize
from collections import defaultdict


import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np
from retrieve import get_retrieved_results, get_slide

# Ensure you have downloaded the 'punkt' tokenizer models
nltk.download('punkt')





import streamlit as st

# Get the parent directory
# parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
# Add the parent directory to the system path
# sys.path.append(parent_dir)

from utils import AzureModels, write_to_file, read_from_file
# from utils_open import OpenModels

# Function to calculate similarity
def calculate_similarity(sentence1: str, sentence2: str) -> float:
    return difflib.SequenceMatcher(None, sentence1, sentence2).ratio()

# Function to highlight sentences based on similarity
def highlight_sentences(predicted: str, ground_truth: str) -> str:
    ground_truth_sentences = nltk.sent_tokenize(ground_truth)
    predicted_sentences = nltk.sent_tokenize(predicted)

    highlighted_text = ""
    
    for pred_sentence in predicted_sentences:
        max_similarity = 0
        for gt_sentence in ground_truth_sentences:
            similarity = calculate_similarity(pred_sentence, gt_sentence)
            if similarity > max_similarity:
                max_similarity = similarity
        # Determine shade of green
        shade = max_similarity  # No need to convert to int, max_similarity is already in [0, 1]
        highlighted_text += f'<span style="background-color: rgba(0, 255, 0, {shade})">{pred_sentence}</span> '

    return highlighted_text

st.title('Multi-Document Narrative Generation')

options = ["Select", "Adobe Firefly", "Adobe Acrobat"]
selection = st.selectbox('Select an example', options)

if selection=="Select":
    pass
elif selection=="Adobe Firefly":
    with open('wiki_1.json', 'r') as fr:
        list_1 = json.load(fr)
    
    with open('wiki_2.json', 'r') as fr:
        list_2 = json.load(fr)
    document_name = "Adobe Firefly"
    section_names = ["Introduction"]*7+["History"]*2
    ref_doc_indices = np.arange(1,8).tolist() + np.arange(1,3).tolist()
else:
    with open('wiki_2.json', 'r') as fr:
        list_1 = json.load(fr)
    
    with open('wiki_1.json', 'r') as fr:
        list_2 = json.load(fr)
    document_name = "Adobe Acrobat"
    section_names = ["Introduction"]*3+["History"]*3+["Document Cloud"]*2
    ref_doc_indices = np.arange(1,4).tolist() + np.arange(1,4).tolist() + np.arange(1,3).tolist()
    
inp_doc_list = []
inp_keys_list = []
retrieved_doc_list = []


if selection!='Select':
    # for item, ret_item in zip(list_1, retrieved_out):
    for item in list_1:
        for key in item['ref_abstract']:
            inp_doc_list.append(item['ref_abstract'][key])
            inp_keys_list.append(key)
            # retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])    
    # Initialize session state
    if 'retrieve_clicked' not in st.session_state:
        st.session_state.retrieve_clicked = False
    
    retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
    
    ui_doc_list = []
    ui_retrieved_doc_list = []
    
    # 5 input text boxes for 5 input documents
    st.header('Input Documents')
    # doc1 = st.text_area('Document 1', value="1. What up bruh??")
    for i in range(len(section_names)):
        ui_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=inp_doc_list[i]))
    
    if st.button('Retrieve'):
        if 'organize_clicked' not in st.session_state:
            st.session_state.organize_clicked = False        
        retrieved_out = get_retrieved_results("gpt4o", 0, "fixed", list_2, list_1)
        write_to_file("retrieved_docs.json", retrieved_out)
        retrieved_out_train = get_retrieved_results("gpt4o", 0, "fixed", list_1, list_2)
        write_to_file("retrieved_docs_train.json", retrieved_out_train)
    
        for ret_item in retrieved_out:
            for key in ret_item['ref_abstract']:
                # inp_doc_list.append(item['ref_abstract'][key])    
                retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
        
        # Step 2: Lowercase the documents
        st.session_state.retrieve_clicked = True
        st.header('Retrieved Documents')
        
        for i in range(len(section_names)):
            ui_retrieved_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=retrieved_doc_list[i]))
    if st.session_state.retrieve_clicked:
        if st.button('Organize'):
            if 'summarize_clicked' not in st.session_state:
                st.session_state.summarize_clicked = False                    
            st.session_state.organize_clicked = True
            st.header("Organization of the documents in the narrative")
            topics_list = ["Introduction", "History", "Document Cloud"]
            
            organize_list = []
            ui_organize_list = []
            
            test_list = read_from_file("retrieved_docs.json")
            train_list = read_from_file("retrieved_docs_train.json")
            organize_out = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, True)
            for i in range(len(organize_out)):
                organize_list.append(organize_out[i])
                ui_organize_list.append(st.text_area("Section: " + topics_list[i], value=organize_out[i]))
            write_to_file("organized_docs.json", organize_out)

        if st.session_state.organize_clicked:
            if st.button("Summarize"):
                # if 'narrative_clicked' not in st.session_state:
                #     st.session_state.narrative_clicked = False                                    
                st.session_state.summarize_clicked = True
                st.header("Intent-based multi-document summary")
                topics_list = ["Introduction", "History", "Document Cloud"]
                generate_list = []
                ui_generate_list = []
                slides_list = []
                test_list = read_from_file("retrieved_docs.json")
                train_list = read_from_file("retrieved_docs_train.json")                
                organize_out = read_from_file("organized_docs.json")
                gen_summary_dict = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, False, organize_out)
                for i in range(len(gen_summary_dict)):
                    highlighted_summary = highlight_sentences(gen_summary_dict[i], test_list[i]['abstract'])
                    slides_list.append(get_slide(topics_list[i], gen_summary_dict[i]))
                    # generate_list.append(.format(topics_list[i], gen_summary_dict[i]))
                    st.markdown(f"## {topics_list[i]}")
                    # st.markdown(f"*{gen_summary_dict[i]}*")
                    st.markdown(highlighted_summary, unsafe_allow_html=True)
                st.header("Generated Narrative")
                for i in range(len(slides_list)):
                    st.markdown("---")
                    st.markdown(slides_list[i])
                    st.markdown("---")
            # if st.session_state.summarize_clicked:
            #     if st.button("Narrative"):                
            #         st.session_state.narrative_clicked = True