MyVTON / app_VTON.py
Roopansh's picture
Initial Commit
73c83cf
raw
history blame
14.9 kB
import gradio as gr
import argparse, torch, os
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL
from typing import List
from util.common import open_folder
from util.image import pil_to_binary_mask, save_output_image
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc
parser = argparse.ArgumentParser()
parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.")
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.")
args = parser.parse_args()
load_mode = args.load_mode
fixed_vae = args.fixed_vae
dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = 'yisol/IDM-VTON'
vae_model_id = 'madebyollin/sdxl-vae-fp16-fix'
dtypeQuantize = dtype
if(load_mode in ('4bit','8bit')):
dtypeQuantize = torch.float8_e4m3fn
ENABLE_CPU_OFFLOAD = args.lowvram
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.allow_tf32 = False
need_restart_cpu_offloading = False
unet = None
pipe = None
UNet_Encoder = None
example_path = os.path.join(os.path.dirname(__file__), 'example')
def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images):
global pipe, unet, UNet_Encoder, need_restart_cpu_offloading
if pipe == None:
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
torch_dtype=dtypeQuantize,
)
if load_mode == '4bit':
quantize_4bit(unet)
unet.requires_grad_(False)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
model_id,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
if load_mode == '4bit':
quantize_4bit(image_encoder)
if fixed_vae:
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype)
else:
vae = AutoencoderKL.from_pretrained(model_id,
subfolder="vae",
torch_dtype=dtype,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
model_id,
subfolder="unet_encoder",
torch_dtype=dtypeQuantize,
)
if load_mode == '4bit':
quantize_4bit(UNet_Encoder)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
pipe_param = {
'pretrained_model_name_or_path': model_id,
'unet': unet,
'torch_dtype': dtype,
'vae': vae,
'image_encoder': image_encoder,
'feature_extractor': CLIPImageProcessor(),
}
pipe = TryonPipeline.from_pretrained(**pipe_param).to(device)
pipe.unet_encoder = UNet_Encoder
pipe.unet_encoder.to(pipe.unet.device)
if load_mode == '4bit':
if pipe.text_encoder is not None:
quantize_4bit(pipe.text_encoder)
if pipe.text_encoder_2 is not None:
quantize_4bit(pipe.text_encoder_2)
else:
if ENABLE_CPU_OFFLOAD:
need_restart_cpu_offloading =True
torch_gc()
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
openpose_model.preprocessor.body_estimation.model.to(device)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
if need_restart_cpu_offloading:
restart_cpu_offload(pipe, load_mode)
elif ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
#if load_mode != '4bit' :
# pipe.enable_xformers_memory_efficient_attention()
garm_img= garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768,1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# mask = transforms.ToTensor()(mask)
# mask = mask.unsqueeze(0)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
if pipe.text_encoder is not None:
pipe.text_encoder.to(device)
if pipe.text_encoder_2 is not None:
pipe.text_encoder_2.to(device)
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast(dtype=dtype):
with torch.no_grad():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype)
results = []
current_seed = seed
for i in range(number_of_images):
if is_randomize_seed:
current_seed = torch.randint(0, 2**32, size=(1,)).item()
generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None
current_seed = current_seed + i
images = pipe(
prompt_embeds=prompt_embeds.to(device,dtype),
negative_prompt_embeds=negative_prompt_embeds.to(device,dtype),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,dtype),
text_embeds_cloth=prompt_embeds_c.to(device,dtype),
cloth = garm_tensor.to(device,dtype),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image = garm_img.resize((768,1024)),
guidance_scale=2.0,
dtype=dtype,
device=device,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed)
results.append(img_path)
else:
img_path = save_output_image(images[0], base_path="outputs", base_filename='img')
results.append(img_path)
return results, mask_gray
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
if "Jensen" in ex_human or "sam1 (1)" in ex_human:
ex_dict = {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## V7 - IDM-VTON πŸ‘•πŸ‘”πŸ‘š improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942")
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
with gr.Row():
category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body")
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=2,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
with gr.Row():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
with gr.Row():
btn_open_outputs = gr.Button("Open Outputs Folder")
btn_open_outputs.click(fn=open_folder)
with gr.Column():
with gr.Row():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
image_gallery = gr.Gallery(label="Generated Images", show_label=True)
with gr.Row():
try_button = gr.Button(value="Try-on")
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1)
is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True)
number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1)
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon')
image_blocks.launch(inbrowser=True,share=args.share)