Spaces:
Running
Running
title: README | |
emoji: π | |
colorFrom: blue | |
colorTo: green | |
sdk: static | |
pinned: false | |
license: mit | |
short_description: Repository of Pretrained Model Weights on BigEarthNet v2.0 | |
[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/) | |
:---:|:---:|:---:|:---:|:---: | |
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo"> | |
# BigEarthNet v2.0 Pretrained Model Weights | |
We provide weights for several different pretrained models. | |
The model weights for the best-performing model, based on the macro average precision score on the recommended test split, have been uploaded. | |
All models have been trained using: i) BigEarthNet-S1 data only (S1), ii) BigEarthNet-S2 data only (S2), or iii) both BigEarthNet-S1 and -S2 (S1+S2) together. | |
The following bands were used to train the models: | |
- For models using BigEarthNet-S1 only: Sentinel-1 bands `["VH", "VV"]` | |
- For models using BigEarthNet-S2 only: Sentinel-2 10m bands and 20m bands `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A"]` | |
- For models using BigEarthNet-S1 and -S2: Sentinel-2 10m bands and 20m bands and Sentinel-1 bands = `["B02", "B03", "B04", "B08", "B05", "B06", "B07", "B11", "B12", "B8A", "VH", "VV"]` | |
The multi-hot encoded output of the model indicates the predicted multi-label output. | |
The multi-hot encoded output relates to the following class labels sorted in alphabetical order: | |
`['Agro-forestry areas', 'Arable land', 'Beaches, dunes, sands', 'Broad-leaved forest', 'Coastal wetlands', | |
'Complex cultivation patterns', 'Coniferous forest', 'Industrial or commercial units', 'Inland waters', | |
'Inland wetlands', 'Land principally occupied by agriculture, with significant areas of natural vegetation', | |
'Marine waters', 'Mixed forest', 'Moors, heathland and sclerophyllous vegetation', | |
'Natural grassland and sparsely vegetated areas', 'Pastures', 'Permanent crops', 'Transitional woodland, shrub', | |
'Urban fabric']` | |
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) | |
## Links | |
| Model | Equivalent [`timm`](https://huggingface.co/docs/timm/en/index) model name | S1 only | S2 only | S1+S2 | | |
|:-----------------|:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------:| | |
| ConvMixer-768/32 | `convmixer_768_32` | [ConvMixer-768/32 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s1-v0.1.1) | [ConvMixer-768/32 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-s2-v0.1.1) | [ConvMixer-768/32 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convmixer_768_32-all-v0.1.1) | | |
| ConvNext v2 Base | `convnextv2_base` | [ConvNext v2 Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1) | [ConvNext v2 Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-s2-v0.1.1) | [ConvNext v2 Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/convnextv2_base-all-v0.1.1) | | |
| MLP-Mixer Base | `mixer_b16_224` | [MLP-Mixer Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s1-v0.1.1) | [MLP-Mixer Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-s2-v0.1.1) | [MLP-Mixer Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mixer_b16_224-all-v0.1.1) | | |
| MobileViT-S | `mobilevit_s` | [MobileViT-S S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s1-v0.1.1) | [MobileViT-S S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-s2-v0.1.1) | [MobileViT-S S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/mobilevit_s-all-v0.1.1) | | |
| ResNet-50 | `resnet50` | [ResNet-50 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s1-v0.1.1) | [ResNet-50 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1) | [ResNet-50 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet50-all-v0.1.1) | | |
| ResNet-101 | `resnet101` | [ResNet-101 S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s1-v0.1.1) | [ResNet-101 S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-s2-v0.1.1) | [ResNet-101 S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/resnet101-all-v0.1.1) | | |
| ViT Base | `vit_base_patch8_224` | [ViT Base S1](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s1-v0.1.1) | [ViT Base S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-s2-v0.1.1) | [ViT Base S1+S2](https://huggingface.co/BIFOLD-BigEarthNetv2-0/vit_base_patch8_224-all-v0.1.1) | | |
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) | |
## Usage | |
To use the model, download the codes that define the model architecture from the | |
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model with the corresponding weights | |
using the code below. Note that [`configilm`](https://pypi.org/project/configilm/) is a requirement to use the | |
code below. | |
```python | |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier | |
model = BigEarthNetv2_0_ImageClassifier.from_pretrained( | |
"path_to/huggingface_model_folder" | |
) | |
``` | |
e.g. | |
```python | |
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier | |
model = BigEarthNetv2_0_ImageClassifier.from_pretrained( | |
"BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1" | |
) | |
``` | |
If you use any of these models in your research, please cite the following papers: | |
```bibtex | |
@article{clasen2024refinedbigearthnet, | |
title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, | |
author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker}, | |
year={2024}, | |
eprint={2407.03653}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
url={https://arxiv.org/abs/2407.03653}, | |
} | |
``` | |
```bibtex | |
@article{hackel2024configilm, | |
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering}, | |
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m}, | |
journal={SoftwareX}, | |
volume={26}, | |
pages={101731}, | |
year={2024}, | |
publisher={Elsevier} | |
} | |
``` |