A newer version of the Gradio SDK is available:
5.6.0
title: gradio-text-to-speech
emoji: π
colorFrom: indigo
colorTo: green
sdk: gradio
sdk_version: 5.1.0
app_file: app.py
pinned: false
license: apache-2.0
F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
F5-TTS: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
E2 TTS: Flat-UNet Transformer, closest reproduction.
Sway Sampling: Inference-time flow step sampling strategy, greatly improves performance
Installation
Clone the repository:
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
Install packages:
pip install -r requirements.txt
Install torch with your CUDA version, e.g. :
pip install torch==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
pip install torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
Prepare Dataset
Example data processing scripts for Emilia and Wenetspeech4TTS, and you may tailor your own one along with a Dataset class in model/dataset.py
.
# prepare custom dataset up to your need
# download corresponding dataset first, and fill in the path in scripts
# Prepare the Emilia dataset
python scripts/prepare_emilia.py
# Prepare the Wenetspeech4TTS dataset
python scripts/prepare_wenetspeech4tts.py
Training
Once your datasets are prepared, you can start the training process.
# setup accelerate config, e.g. use multi-gpu ddp, fp16
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml
accelerate config
accelerate launch test_train.py
Inference
To run inference with pretrained models, download the checkpoints from π€ Hugging Face.
Single Inference
You can test single inference using the following command. Before running the command, modify the config up to your need.
# modify the config up to your need,
# e.g. fix_duration (the total length of prompt + to_generate, currently support up to 30s)
# nfe_step (larger takes more time to do more precise inference ode)
# ode_method (switch to 'midpoint' for better compatibility with small nfe_step, )
# ( though 'midpoint' is 2nd-order ode solver, slower compared to 1st-order 'Euler')
python test_infer_single.py
Speech Editing
To test speech editing capabilities, use the following command.
python test_infer_single_edit.py
Gradio App
You can launch a Gradio app (web interface) to launch a GUI for inference.
First, make sure you have the dependencies installed (pip install -r requirements.txt
). Then, install the Gradio app dependencies:
pip install -r requirements_gradio.txt
After installing the dependencies, launch the app (will load ckpt from Huggingface, you may set ckpt_path
to local file in gradio_app.py
):
python gradio_app.py
You can specify the port/host:
python gradio_app.py --port 7860 --host 0.0.0.0
Or launch a share link:
python gradio_app.py --share
Evaluation
Prepare Test Datasets
- Seed-TTS test set: Download from seed-tts-eval.
- LibriSpeech test-clean: Download from OpenSLR.
- Unzip the downloaded datasets and place them in the data/ directory.
- Update the path for the test-clean data in
test_infer_batch.py
- Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo
Batch Inference for Test Set
To run batch inference for evaluations, execute the following commands:
# batch inference for evaluations
accelerate config # if not set before
bash test_infer_batch.sh
Download Evaluation Model Checkpoints
- Chinese ASR Model: Paraformer-zh
- English ASR Model: Faster-Whisper
- WavLM Model: Download from Google Drive.
Objective Evaluation
Some Notes
For faster-whisper with CUDA 11:
pip install --force-reinstall ctranslate2==3.24.0
(Recommended) To avoid possible ASR failures, such as abnormal repetitions in output:
pip install faster-whisper==0.10.1
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
# Evaluation for Seed-TTS test set
python scripts/eval_seedtts_testset.py
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
python scripts/eval_librispeech_test_clean.py
Acknowledgements
- E2-TTS brilliant work, simple and effective
- Emilia, WenetSpeech4TTS valuable datasets
- lucidrains initial CFM structure with also bfs18 for discussion
- SD3 & Hugging Face diffusers DiT and MMDiT code structure
- torchdiffeq as ODE solver, Vocos as vocoder
- mrfakename huggingface space demo ~
- FunASR, faster-whisper, UniSpeech for evaluation tools
- ctc-forced-aligner for speech edit test
Citation
@article{chen-etal-2024-f5tts,
title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
journal={arXiv preprint arXiv:2410.06885},
year={2024},
}
License
Our code is released under MIT License.