Spaces:
Sleeping
Sleeping
File size: 5,841 Bytes
898b7f4 ab4d778 df0da2c ab4d778 1ced4b5 d2819b7 ab4d778 2974f61 2ac7c84 ab4d778 2ac7c84 ab4d778 2974f61 ab4d778 2ac7c84 1ced4b5 ab4d778 2ac7c84 ab4d778 4dd639c 00fb423 4dd639c 2974f61 4dd639c 5683e41 52ac768 1ced4b5 52ac768 2974f61 52ac768 5683e41 52ac768 1ced4b5 52ac768 309dde4 4e1e12d 00fb423 3b4246d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import torch
import torchaudio
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
def check_and_install(package):
try:
__import__(package)
except ImportError:
print(f"{package} no está instalado. Instalando...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Descargando {file_name} de {repo_id}")
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
model.cuda()
print("Modelo cargado en GPU")
def predict(prompt, language, reference_audio, speed):
try:
if len(prompt) < 2 or len(prompt) > 600:
return None, "El texto debe tener entre 2 y 600 caracteres."
# Custom inference parameters for better voice likeness and stability
temperature = 0.65
length_penalty = 1.2
repetition_penalty = 2.2
top_k = 40
top_p = 0.75
enable_text_splitting = True
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=reference_audio
)
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
speed=speed,
enable_text_splitting=enable_text_splitting
)
inference_time = time.time() - start_time
output_path = "pedro_labattaglia_TTS.wav"
# Guardar el audio directamente desde el output del modelo
import scipy.io.wavfile as wavfile
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, f"Error: {str(e)}"
# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
"neutral_ingles.wav"
]
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista
- Ajuste la velocidad del habla si lo desea
- Escriba el texto que desea sintetizar
- Presione generar voz
"""
# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description)
# Fila para centrar la imagen
with gr.Row():
with gr.Column(equal_height=True):
gr.Image(
"https://www.labattaglia.com.ar/images/about_me_pic2.jpg",
label="",
show_label=False,
container=False,
elem_id="image-container"
)
# Fila para seleccionar idioma, referencia, velocidad y generar voz
with gr.Row():
with gr.Column(scale=2):
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
generate_button = gr.Button("Generar voz", variant="primary")
with gr.Column(scale=1):
generated_audio = gr.Audio(label="Audio generado", interactive=False)
metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
# Configuración del botón para generar voz
generate_button.click(
predict,
inputs=[input_text, language_selector, reference_audio, speed_slider],
outputs=[generated_audio, metrics_output]
)
# Estilos CSS personalizados
demo.css = """
#image-container img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 256px;
height: auto;
}
"""
if __name__ == "__main__":
demo.launch(auth=[("Pedro Labattaglia", "PL2024"), ("Invitado", "PLTTS2024")]) |