File size: 5,841 Bytes
898b7f4
ab4d778
 
 
 
 
 
 
df0da2c
ab4d778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ced4b5
d2819b7
 
 
ab4d778
2974f61
 
 
 
 
 
 
2ac7c84
ab4d778
 
 
 
 
 
 
 
 
 
 
2ac7c84
ab4d778
 
 
2974f61
 
 
ab4d778
 
 
 
 
2ac7c84
1ced4b5
ab4d778
 
2ac7c84
ab4d778
 
 
 
 
 
 
 
 
 
 
4dd639c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00fb423
 
4dd639c
 
 
 
 
 
2974f61
4dd639c
 
 
 
5683e41
52ac768
 
 
 
 
 
 
 
 
 
 
 
 
 
1ced4b5
52ac768
 
 
 
2974f61
52ac768
 
 
 
 
 
 
5683e41
52ac768
 
1ced4b5
52ac768
 
 
 
 
309dde4
 
 
 
 
 
 
4e1e12d
 
00fb423
3b4246d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import torch
import torchaudio
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download

# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"

def check_and_install(package):
    try:
        __import__(package)
    except ImportError:
        print(f"{package} no está instalado. Instalando...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", package])

print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]

for file_name in files_to_download:
    print(f"Descargando {file_name} de {repo_id}")
    hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)

config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")

config = XttsConfig()
config.load_json(config_path)

model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)

model.cuda()

print("Modelo cargado en GPU")

def predict(prompt, language, reference_audio, speed):
    try:
        if len(prompt) < 2 or len(prompt) > 600:
            return None, "El texto debe tener entre 2 y 600 caracteres."

        # Custom inference parameters for better voice likeness and stability
        temperature = 0.65
        length_penalty = 1.2
        repetition_penalty = 2.2
        top_k = 40
        top_p = 0.75
        enable_text_splitting = True

        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            audio_path=reference_audio
        )

        start_time = time.time()

        out = model.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            temperature=temperature,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
            top_k=top_k,
            top_p=top_p,
            speed=speed,
            enable_text_splitting=enable_text_splitting
        )

        inference_time = time.time() - start_time
        
        output_path = "pedro_labattaglia_TTS.wav"
        # Guardar el audio directamente desde el output del modelo
        import scipy.io.wavfile as wavfile
        wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])

        audio_length = len(out["wav"]) / config.audio["output_sample_rate"]  # duración del audio en segundos
        real_time_factor = inference_time / audio_length

        metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
        metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"

        return output_path, metrics_text

    except Exception as e:
        print(f"Error detallado: {str(e)}")
        return None, f"Error: {str(e)}"

# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
    "serio.wav",
    "neutral.wav",
    "alegre.wav",
    "neutral_ingles.wav"
]

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="gray",
).set(
    body_background_fill='*neutral_100',
    body_background_fill_dark='*neutral_900',
)

description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. 
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista 
- Ajuste la velocidad del habla si lo desea
- Escriba el texto que desea sintetizar
- Presione generar voz
"""

# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
    gr.Markdown(description)

    # Fila para centrar la imagen
    with gr.Row():
        with gr.Column(equal_height=True):
            gr.Image(
                "https://www.labattaglia.com.ar/images/about_me_pic2.jpg", 
                label="", 
                show_label=False,
                container=False,
                elem_id="image-container"
            )

    # Fila para seleccionar idioma, referencia, velocidad y generar voz
    with gr.Row():
        with gr.Column(scale=2):
            language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
            reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
            speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
            input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
            generate_button = gr.Button("Generar voz", variant="primary")

        with gr.Column(scale=1):
            generated_audio = gr.Audio(label="Audio generado", interactive=False)
            metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")

    # Configuración del botón para generar voz
    generate_button.click(
        predict,
        inputs=[input_text, language_selector, reference_audio, speed_slider],
        outputs=[generated_audio, metrics_output]
    )

# Estilos CSS personalizados
demo.css = """
#image-container img {
    display: block;
    margin-left: auto;
    margin-right: auto;
    max-width: 256px;
    height: auto;
}
"""

if __name__ == "__main__":
    demo.launch(auth=[("Pedro Labattaglia", "PL2024"), ("Invitado", "PLTTS2024")])