Spaces:
Sleeping
Sleeping
import json | |
import os | |
import gradio as gr | |
import time | |
from pydantic import BaseModel, Field | |
from typing import Any, Optional, Dict, List | |
from huggingface_hub import InferenceClient | |
from langchain.llms.base import LLM | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import Chroma | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
path_work = "." | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={"device": "cpu"} | |
) | |
vectordb = Chroma( | |
persist_directory = path_work + '/cromadb_llama2-papers', | |
embedding_function=embeddings) | |
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) | |
class KwArgsModel(BaseModel): | |
kwargs: Dict[str, Any] = Field(default_factory=dict) | |
class CustomInferenceClient(LLM, KwArgsModel): | |
model_name: str | |
inference_client: InferenceClient | |
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None): | |
inference_client = InferenceClient(model=model_name, token=hf_token) | |
super().__init__( | |
model_name=model_name, | |
hf_token=hf_token, | |
kwargs=kwargs, | |
inference_client=inference_client | |
) | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None | |
) -> str: | |
if stop is not None: | |
raise ValueError("stop kwargs are not permitted.") | |
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True) | |
response = ''.join(response_gen) | |
return response | |
def _llm_type(self) -> str: | |
return "custom" | |
def _identifying_params(self) -> dict: | |
return {"model_name": self.model_name} | |
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True} | |
model_list=[ | |
"meta-llama/Llama-2-13b-chat-hf", | |
"HuggingFaceH4/zephyr-7b-alpha", | |
"meta-llama/Llama-2-70b-chat-hf", | |
"tiiuae/falcon-180B-chat" | |
] | |
qa_chain = None | |
def load_model(model_selected): | |
global qa_chain | |
model_name = model_selected | |
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) | |
from langchain.chains import RetrievalQA | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
verbose=True, | |
) | |
qa_chain | |
load_model("meta-llama/Llama-2-70b-chat-hf") | |
def model_select(model_selected): | |
load_model(model_selected) | |
return f"๋ชจ๋ธ {model_selected} ๋ก๋ฉ ์๋ฃ." | |
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,): | |
temperature = float(temperature) | |
if temperature < 1e-2: temperature = 1e-2 | |
top_p = float(top_p) | |
llm_response = qa_chain(message) | |
res_result = llm_response['result'] | |
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]] | |
response = f"{res_result}" + "\n\n" + "[๋ต๋ณ ๊ทผ๊ฑฐ ์์ค ๋ ผ๋ฌธ (ctrl + click ํ์ธ์!)] :" + "\n" + f" \n {res_relevant_doc}" | |
print("response: =====> \n", response, "\n\n") | |
tokens = response.split('\n') | |
token_list = [] | |
for idx, token in enumerate(tokens): | |
token_dict = {"id": idx + 1, "text": token} | |
token_list.append(token_dict) | |
response = {"data": {"token": token_list}} | |
response = json.dumps(response, indent=4) | |
response = json.loads(response) | |
data_dict = response.get('data', {}) | |
token_list = data_dict.get('token', []) | |
partial_message = "" | |
for token_entry in token_list: | |
if token_entry: | |
try: | |
token_id = token_entry.get('id', None) | |
token_text = token_entry.get('text', None) | |
if token_text: | |
for char in token_text: | |
partial_message += char | |
yield partial_message | |
time.sleep(0.01) | |
else: | |
print(f"[[์๋]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}") | |
pass | |
except KeyError as e: | |
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}") | |
continue | |
title = "Llama-2 ๋ชจ๋ธ ๊ด๋ จ ๋ ผ๋ฌธ Generative QA (with RAG) ์๋น์ค (Llama-2-70b ๋ชจ๋ธ ๋ฑ ํ์ฉ)" | |
description = """Chat history ์ ์ง ๋ณด๋ค๋ QA์ ์ถฉ์คํ๋๋ก ์ ์๋์์ผ๋ฏ๋ก Single turn์ผ๋ก ํ์ฉ ํ์ฌ ์ฃผ์ธ์. Default๋ก Llama-2 70b ๋ชจ๋ธ๋ก ์ค์ ๋์ด ์์ผ๋ GPU ์๋น์ค ํ๋ ์ด๊ณผ๋ก Error๊ฐ ๋ฐ์ํ ์ ์์ผ๋ ์ํด๋ถํ๋๋ฆฌ๋ฉฐ, ํ๋ฉด ํ๋จ์ ๋ชจ๋ธ ๋ณ๊ฒฝ/๋ก๋ฉํ์์ด ๋ค๋ฅธ ๋ชจ๋ธ๋ก ๋ณ๊ฒฝํ์ฌ ์ฌ์ฉ์ ๋ถํ๋๋ฆฝ๋๋ค. (๋ค๋ง, Llama-2 70b๊ฐ ๊ฐ์ฅ ์ ํํ์ค๋ ์ฐธ๊ณ ํ์ฌ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.) """ | |
css = """.toast-wrap { display: none !important } """ | |
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]] | |
def vote(data: gr.LikeData): | |
if data.liked: print("You upvoted this response: " + data.value) | |
else: print("You downvoted this response: " + data.value) | |
additional_inputs = [ | |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), | |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"), | |
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), | |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") | |
] | |
chatbot_stream = gr.Chatbot(avatar_images=( | |
"https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW", | |
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv" | |
), bubble_full_width = False) | |
chat_interface_stream = gr.ChatInterface( | |
predict, | |
title=title, | |
description=description, | |
chatbot=chatbot_stream, | |
css=css, | |
examples=examples, | |
) | |
with gr.Blocks() as demo: | |
with gr.Tab("์คํธ๋ฆฌ๋ฐ"): | |
chatbot_stream.like(vote, None, None) | |
chat_interface_stream.render() | |
with gr.Row(): | |
with gr.Column(scale=6): | |
with gr.Row(): | |
model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์ ํ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5) | |
submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋ก๋", scale=1) | |
with gr.Column(scale=4): | |
model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ํ") | |
submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status]) | |
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) |