msy127's picture
Update app.py
4b47b90
raw
history blame
7.48 kB
import json
import os
import gradio as gr
import time
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
import os
from dotenv import load_dotenv
load_dotenv()
path_work = "."
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
embeddings = HuggingFaceInstructEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
vectordb = Chroma(
persist_directory = path_work + '/cromadb_llama2-papers',
embedding_function=embeddings)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
class KwArgsModel(BaseModel):
kwargs: Dict[str, Any] = Field(default_factory=dict)
class CustomInferenceClient(LLM, KwArgsModel):
model_name: str
inference_client: InferenceClient
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
inference_client = InferenceClient(model=model_name, token=hf_token)
super().__init__(
model_name=model_name,
hf_token=hf_token,
kwargs=kwargs,
inference_client=inference_client
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
response = ''.join(response_gen)
return response
@property
def _llm_type(self) -> str:
return "custom"
@property
def _identifying_params(self) -> dict:
return {"model_name": self.model_name}
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
model_list=[
"meta-llama/Llama-2-13b-chat-hf",
"HuggingFaceH4/zephyr-7b-alpha",
"meta-llama/Llama-2-70b-chat-hf",
"tiiuae/falcon-180B-chat"
]
qa_chain = None
def load_model(model_selected):
global qa_chain
model_name = model_selected
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
qa_chain
load_model("meta-llama/Llama-2-70b-chat-hf")
def model_select(model_selected):
load_model(model_selected)
return f"๋ชจ๋ธ {model_selected} ๋กœ๋”ฉ ์™„๋ฃŒ."
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
llm_response = qa_chain(message)
res_result = llm_response['result']
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
response = f"{res_result}" + "\n\n" + "[๋‹ต๋ณ€ ๊ทผ๊ฑฐ ์†Œ์Šค ๋…ผ๋ฌธ (ctrl + click ํ•˜์„ธ์š”!)] :" + "\n" + f" \n {res_relevant_doc}"
print("response: =====> \n", response, "\n\n")
tokens = response.split('\n')
token_list = []
for idx, token in enumerate(tokens):
token_dict = {"id": idx + 1, "text": token}
token_list.append(token_dict)
response = {"data": {"token": token_list}}
response = json.dumps(response, indent=4)
response = json.loads(response)
data_dict = response.get('data', {})
token_list = data_dict.get('token', [])
partial_message = ""
for token_entry in token_list:
if token_entry:
try:
token_id = token_entry.get('id', None)
token_text = token_entry.get('text', None)
if token_text:
for char in token_text:
partial_message += char
yield partial_message
time.sleep(0.01)
else:
print(f"[[์›Œ๋‹]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
pass
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
continue
title = "Llama-2 ๋ชจ๋ธ ๊ด€๋ จ ๋…ผ๋ฌธ Generative QA (with RAG) ์„œ๋น„์Šค (Llama-2-70b ๋ชจ๋ธ ๋“ฑ ํ™œ์šฉ)"
description = """Chat history ์œ ์ง€ ๋ณด๋‹ค๋Š” QA์— ์ถฉ์‹คํ•˜๋„๋ก ์ œ์ž‘๋˜์—ˆ์œผ๋ฏ€๋กœ Single turn์œผ๋กœ ํ™œ์šฉ ํ•˜์—ฌ ์ฃผ์„ธ์š”. Default๋กœ Llama-2 70b ๋ชจ๋ธ๋กœ ์„ค์ •๋˜์–ด ์žˆ์œผ๋‚˜ GPU ์„œ๋น„์Šค ํ•œ๋„ ์ดˆ๊ณผ๋กœ Error๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ ์–‘ํ•ด๋ถ€ํƒ๋“œ๋ฆฌ๋ฉฐ, ํ™”๋ฉด ํ•˜๋‹จ์˜ ๋ชจ๋ธ ๋ณ€๊ฒฝ/๋กœ๋”ฉํ•˜์‹œ์–ด ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ ๋ณ€๊ฒฝํ•˜์—ฌ ์‚ฌ์šฉ์„ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค. (๋‹ค๋งŒ, Llama-2 70b๊ฐ€ ๊ฐ€์žฅ ์ •ํ™•ํ•˜์˜ค๋‹ˆ ์ฐธ๊ณ ํ•˜์—ฌ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.) """
css = """.toast-wrap { display: none !important } """
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]]
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
additional_inputs = [
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]
chatbot_stream = gr.Chatbot(avatar_images=(
"https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW",
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
), bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(
predict,
title=title,
description=description,
chatbot=chatbot_stream,
css=css,
examples=examples,
)
with gr.Blocks() as demo:
with gr.Tab("์ŠคํŠธ๋ฆฌ๋ฐ"):
chatbot_stream.like(vote, None, None)
chat_interface_stream.render()
with gr.Row():
with gr.Column(scale=6):
with gr.Row():
model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์„ ํƒ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5)
submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋กœ๋“œ", scale=1)
with gr.Column(scale=4):
model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ƒํƒœ")
submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status])
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)