File size: 5,482 Bytes
8187330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027870
5931482
f3f78e5
5931482
 
 
 
b1169b6
52166ec
1027870
8187330
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

# common
import os, sys
import math
#import numpy as np

#from random import randrange

# torch
import torch
from torch import nn
#from torch import einsum

import torch.nn.functional as F

#from torch import optim
#from torch.optim import lr_scheduler

#from torch.utils.data import DataLoader
#from torch.utils.data.sampler import SubsetRandomSampler

# torchVision
import torchvision
from torchvision import transforms
#from torchvision import  models
#from torchvision.datasets import CIFAR10, CIFAR100

# torchinfo
#from torchinfo import summary

# Define model
class WideBasic(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.residual = nn.Sequential(
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=3,
                stride=stride,
                padding=1
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Conv2d(
                out_channels,
                out_channels,
                kernel_size=3,
                stride=1,
                padding=1
            )
        )

        self.shortcut = nn.Sequential()

        if in_channels != out_channels or stride != 1:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1, stride=stride)
            )

    def forward(self, x):
        residual = self.residual(x)
        shortcut = self.shortcut(x)

        return residual + shortcut

class WideResNet(nn.Module):
    def __init__(self, num_classes, block, depth=50, widen_factor=1):
        super().__init__()

        self.depth = depth
        k = widen_factor
        l = int((depth - 4) / 6)
        self.in_channels = 16
        self.init_conv = nn.Conv2d(3, self.in_channels, 3, 1, padding=1)
        self.conv2 = self._make_layer(block, 16 * k, l, 1)
        self.conv3 = self._make_layer(block, 32 * k, l, 2)
        self.conv4 = self._make_layer(block, 64 * k, l, 2)
        self.bn = nn.BatchNorm2d(64 * k)
        self.relu = nn.ReLU(inplace=True)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(64 * k, num_classes)

    def forward(self, x):
        x = self.init_conv(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)

        return x

    def _make_layer(self, block, out_channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_channels, out_channels, stride))
            self.in_channels = out_channels

        return nn.Sequential(*layers)


model = WideResNet(10, WideBasic, depth=40, widen_factor=10)
model.load_state_dict(
        torch.load("weights/cifar10_wide_resnet_model.pt",
            map_location=torch.device('cpu'))
    )

model.eval()

import gradio as gr
from torchvision import transforms

import os
import glob

examples_dir = './examples'
example_files = glob.glob(os.path.join(examples_dir, '*.png'))

normalize = transforms.Normalize(
                            mean=[0.4914, 0.4822, 0.4465],
                            std=[0.2470, 0.2435, 0.2616],
                            )

transform = transforms.Compose([
                                    transforms.ToTensor(),
                                    normalize,
])

classes = [
    "airplane",
    "automobile",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck",
]

def predict(image):
    tsr_image = transform(image).unsqueeze(dim=0)

    model.eval()
    with torch.no_grad():
        pred = model(tsr_image)
        prob = torch.nn.functional.softmax(pred[0], dim=0)

    confidences = {classes[i]: float(prob[i]) for i in range(10)} 
    return confidences


with gr.Blocks(css=".gradio-container {background:honeydew;}", title="WideResNet - CIFAR10 Classification"
               ) as demo:
    gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">WideResNet - CIFAR10 Classification</div>""")

    with gr.Row():
        input_image = gr.Image(type="pil", image_mode="RGB", shape=(32, 32))

        output_label=gr.Label(label="Probabilities", num_top_classes=3)

    send_btn = gr.Button("Infer")
    
    with gr.Row():
        gr.Examples(['./examples/cifar10_test00.png'], label='Sample images : dog', inputs=input_image)
        gr.Examples(['./examples/cifar10_test01.png'], label='ship', inputs=input_image)
        gr.Examples(['./examples/cifar10_test02.png'], label='airplane', inputs=input_image)
        gr.Examples(['./examples/cifar10_test03.png'], label='frog', inputs=input_image)
        gr.Examples(['./examples/cifar10_test04.png'], label='truck', inputs=input_image)
        gr.Examples(['./examples/cifar10_test05.png'], label='automobile', inputs=input_image)

        #gr.Examples(example_files, inputs=input_image)
        #gr.Examples(['examples/sample02.png', 'examples/sample04.png'], inputs=input_image2)

    send_btn.click(fn=predict, inputs=input_image, outputs=output_label)

# demo.queue(concurrency_count=3)
demo.launch()


### EOF ###