Spaces:
Runtime error
Runtime error
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the Creative Commons Attribution-NonCommercial | |
# 4.0 International License. To view a copy of this license, visit | |
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to | |
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. | |
"""Multi-resolution input data pipeline.""" | |
import os | |
import glob | |
import numpy as np | |
import tensorflow as tf | |
import dnnlib | |
import dnnlib.tflib as tflib | |
#---------------------------------------------------------------------------- | |
# Parse individual image from a tfrecords file. | |
def parse_tfrecord_tf(record): | |
features = tf.parse_single_example(record, features={ | |
'shape': tf.FixedLenFeature([3], tf.int64), | |
'data': tf.FixedLenFeature([], tf.string)}) | |
data = tf.decode_raw(features['data'], tf.uint8) | |
return tf.reshape(data, features['shape']) | |
def parse_tfrecord_np(record): | |
ex = tf.train.Example() | |
ex.ParseFromString(record) | |
shape = ex.features.feature['shape'].int64_list.value # temporary pylint workaround # pylint: disable=no-member | |
data = ex.features.feature['data'].bytes_list.value[0] # temporary pylint workaround # pylint: disable=no-member | |
return np.fromstring(data, np.uint8).reshape(shape) | |
#---------------------------------------------------------------------------- | |
# Dataset class that loads data from tfrecords files. | |
class TFRecordDataset: | |
def __init__(self, | |
tfrecord_dir, # Directory containing a collection of tfrecords files. | |
resolution = None, # Dataset resolution, None = autodetect. | |
label_file = None, # Relative path of the labels file, None = autodetect. | |
max_label_size = 0, # 0 = no labels, 'full' = full labels, <int> = N first label components. | |
repeat = True, # Repeat dataset indefinitely. | |
shuffle_mb = 4096, # Shuffle data within specified window (megabytes), 0 = disable shuffling. | |
prefetch_mb = 2048, # Amount of data to prefetch (megabytes), 0 = disable prefetching. | |
buffer_mb = 256, # Read buffer size (megabytes). | |
num_threads = 2): # Number of concurrent threads. | |
self.tfrecord_dir = tfrecord_dir | |
self.resolution = None | |
self.resolution_log2 = None | |
self.shape = [] # [channel, height, width] | |
self.dtype = 'uint8' | |
self.dynamic_range = [0, 255] | |
self.label_file = label_file | |
self.label_size = None # [component] | |
self.label_dtype = None | |
self._np_labels = None | |
self._tf_minibatch_in = None | |
self._tf_labels_var = None | |
self._tf_labels_dataset = None | |
self._tf_datasets = dict() | |
self._tf_iterator = None | |
self._tf_init_ops = dict() | |
self._tf_minibatch_np = None | |
self._cur_minibatch = -1 | |
self._cur_lod = -1 | |
# List tfrecords files and inspect their shapes. | |
assert os.path.isdir(self.tfrecord_dir) | |
tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords'))) | |
assert len(tfr_files) >= 1 | |
tfr_shapes = [] | |
for tfr_file in tfr_files: | |
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE) | |
for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt): | |
tfr_shapes.append(parse_tfrecord_np(record).shape) | |
break | |
# Autodetect label filename. | |
if self.label_file is None: | |
guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels'))) | |
if len(guess): | |
self.label_file = guess[0] | |
elif not os.path.isfile(self.label_file): | |
guess = os.path.join(self.tfrecord_dir, self.label_file) | |
if os.path.isfile(guess): | |
self.label_file = guess | |
# Determine shape and resolution. | |
max_shape = max(tfr_shapes, key=np.prod) | |
self.resolution = resolution if resolution is not None else max_shape[1] | |
self.resolution_log2 = int(np.log2(self.resolution)) | |
self.shape = [max_shape[0], self.resolution, self.resolution] | |
tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes] | |
assert all(shape[0] == max_shape[0] for shape in tfr_shapes) | |
assert all(shape[1] == shape[2] for shape in tfr_shapes) | |
assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods)) | |
assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1)) | |
# Load labels. | |
assert max_label_size == 'full' or max_label_size >= 0 | |
self._np_labels = np.zeros([1<<20, 0], dtype=np.float32) | |
if self.label_file is not None and max_label_size != 0: | |
self._np_labels = np.load(self.label_file) | |
assert self._np_labels.ndim == 2 | |
if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size: | |
self._np_labels = self._np_labels[:, :max_label_size] | |
self.label_size = self._np_labels.shape[1] | |
self.label_dtype = self._np_labels.dtype.name | |
# Build TF expressions. | |
with tf.name_scope('Dataset'), tf.device('/cpu:0'): | |
self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[]) | |
self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var') | |
self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var) | |
for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods): | |
if tfr_lod < 0: | |
continue | |
dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20) | |
dset = dset.map(parse_tfrecord_tf, num_parallel_calls=num_threads) | |
dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset)) | |
bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize | |
if shuffle_mb > 0: | |
dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1) | |
if repeat: | |
dset = dset.repeat() | |
if prefetch_mb > 0: | |
dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1) | |
dset = dset.batch(self._tf_minibatch_in) | |
self._tf_datasets[tfr_lod] = dset | |
self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes) | |
self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()} | |
# Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf(). | |
def configure(self, minibatch_size, lod=0): | |
lod = int(np.floor(lod)) | |
assert minibatch_size >= 1 and lod in self._tf_datasets | |
if self._cur_minibatch != minibatch_size or self._cur_lod != lod: | |
self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size}) | |
self._cur_minibatch = minibatch_size | |
self._cur_lod = lod | |
# Get next minibatch as TensorFlow expressions. | |
def get_minibatch_tf(self): # => images, labels | |
return self._tf_iterator.get_next() | |
# Get next minibatch as NumPy arrays. | |
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels | |
self.configure(minibatch_size, lod) | |
if self._tf_minibatch_np is None: | |
self._tf_minibatch_np = self.get_minibatch_tf() | |
return tflib.run(self._tf_minibatch_np) | |
# Get random labels as TensorFlow expression. | |
def get_random_labels_tf(self, minibatch_size): # => labels | |
if self.label_size > 0: | |
with tf.device('/cpu:0'): | |
return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32)) | |
return tf.zeros([minibatch_size, 0], self.label_dtype) | |
# Get random labels as NumPy array. | |
def get_random_labels_np(self, minibatch_size): # => labels | |
if self.label_size > 0: | |
return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])] | |
return np.zeros([minibatch_size, 0], self.label_dtype) | |
#---------------------------------------------------------------------------- | |
# Base class for datasets that are generated on the fly. | |
class SyntheticDataset: | |
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'): | |
self.resolution = resolution | |
self.resolution_log2 = int(np.log2(resolution)) | |
self.shape = [num_channels, resolution, resolution] | |
self.dtype = dtype | |
self.dynamic_range = dynamic_range | |
self.label_size = label_size | |
self.label_dtype = label_dtype | |
self._tf_minibatch_var = None | |
self._tf_lod_var = None | |
self._tf_minibatch_np = None | |
self._tf_labels_np = None | |
assert self.resolution == 2 ** self.resolution_log2 | |
with tf.name_scope('Dataset'): | |
self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var') | |
self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var') | |
def configure(self, minibatch_size, lod=0): | |
lod = int(np.floor(lod)) | |
assert minibatch_size >= 1 and 0 <= lod <= self.resolution_log2 | |
tflib.set_vars({self._tf_minibatch_var: minibatch_size, self._tf_lod_var: lod}) | |
def get_minibatch_tf(self): # => images, labels | |
with tf.name_scope('SyntheticDataset'): | |
shrink = tf.cast(2.0 ** tf.cast(self._tf_lod_var, tf.float32), tf.int32) | |
shape = [self.shape[0], self.shape[1] // shrink, self.shape[2] // shrink] | |
images = self._generate_images(self._tf_minibatch_var, self._tf_lod_var, shape) | |
labels = self._generate_labels(self._tf_minibatch_var) | |
return images, labels | |
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels | |
self.configure(minibatch_size, lod) | |
if self._tf_minibatch_np is None: | |
self._tf_minibatch_np = self.get_minibatch_tf() | |
return tflib.run(self._tf_minibatch_np) | |
def get_random_labels_tf(self, minibatch_size): # => labels | |
with tf.name_scope('SyntheticDataset'): | |
return self._generate_labels(minibatch_size) | |
def get_random_labels_np(self, minibatch_size): # => labels | |
self.configure(minibatch_size) | |
if self._tf_labels_np is None: | |
self._tf_labels_np = self.get_random_labels_tf(minibatch_size) | |
return tflib.run(self._tf_labels_np) | |
def _generate_images(self, minibatch, lod, shape): # to be overridden by subclasses # pylint: disable=unused-argument | |
return tf.zeros([minibatch] + shape, self.dtype) | |
def _generate_labels(self, minibatch): # to be overridden by subclasses | |
return tf.zeros([minibatch, self.label_size], self.label_dtype) | |
#---------------------------------------------------------------------------- | |
# Helper func for constructing a dataset object using the given options. | |
def load_dataset(class_name='training.dataset.TFRecordDataset', data_dir=None, verbose=False, **kwargs): | |
adjusted_kwargs = dict(kwargs) | |
if 'tfrecord_dir' in adjusted_kwargs and data_dir is not None: | |
adjusted_kwargs['tfrecord_dir'] = os.path.join(data_dir, adjusted_kwargs['tfrecord_dir']) | |
if verbose: | |
print('Streaming data using %s...' % class_name) | |
dataset = dnnlib.util.get_obj_by_name(class_name)(**adjusted_kwargs) | |
if verbose: | |
print('Dataset shape =', np.int32(dataset.shape).tolist()) | |
print('Dynamic range =', dataset.dynamic_range) | |
print('Label size =', dataset.label_size) | |
return dataset | |
#---------------------------------------------------------------------------- | |