Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/lr_monitor.py.
from typing import Any
from pytorch_lightning import Callback, Trainer
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
class LossScaleMonitor(Callback):
"""Monitor the loss scale for AMP (fp16).
"""
# Use on_before_optimizer_step instead of on_train_batch_start since there might be
# gradient accumulation and we only care about the loss scale when it could change (i.e.,
# optimizer.step).
@rank_zero_only
def on_before_optimizer_step(self, trainer: Trainer, *args: Any, **kwargs: Any) -> None:
if not trainer._logger_connector.should_update_logs:
return
stats = {}
if isinstance(trainer.strategy, DeepSpeedStrategy):
stats = {'scalar/scale': trainer.model.optimizer.loss_scale}
if hasattr(trainer, 'precision_plugin') and hasattr(trainer.precision_plugin, 'scaler'):
scaler = trainer.precision_plugin.scaler
if scaler is not None:
stats = {
'scaler/scale': scaler.get_scale(),
'scaler/growth_tracker': scaler._get_growth_tracker(),
}
if stats and trainer.loggers is not None:
for logger in trainer.loggers:
logger.log_metrics(stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)