effibench-leaderboard / calculate_memory_usage.py
qyhfrank's picture
chore: Reorder arguments in run_model_task function
8a5784f
import os
import glob
import argparse
from code_efficiency_calculator import run_model_task
def calculate_memory_usage(dat_file_path):
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
mem_in_mb = float(parts[1])
timestamp = float(parts[2])
if prev_time > 0:
time_interval_s = timestamp - prev_time
mem_time_mb_s += (prev_mem_mb + mem_in_mb) / 2 * time_interval_s
prev_time = timestamp
prev_mem_mb = mem_in_mb
return mem_time_mb_s
def calculate_runtime(dat_file_path):
with open(dat_file_path, 'r') as file:
start_time = float("inf")
end_time = float("-inf")
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
timestamp = float(parts[2])
start_time = min(start_time, timestamp)
end_time = max(end_time, timestamp)
return max(end_time - start_time,0)
def report_max_memory_usage(dat_file_path):
max_memory_usage = 0
with open(dat_file_path, 'r') as file:
next(file)
for line in file:
if "__main__." in line:
continue
parts = line.split()
mem_in_mb = float(parts[1])
max_memory_usage = max(max_memory_usage, mem_in_mb)
return max_memory_usage
def report_results(task, model, file):
run_model_task(task, model, file)
dat_directory = f"./results/{task}_{model}"
canonical_solution_directory = f"./results/{task}_canonical_solution"
canonical_solution_memory_usage = {}
canonical_solution_execution_time = {}
canonical_solution_max_memory_usage = {}
for dat_file in glob.glob(os.path.join(canonical_solution_directory, "*.dat")):
try:
problem_idx = os.path.basename(dat_file).split('.')[0]
canonical_solution_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file)
canonical_solution_execution_time[int(problem_idx)] = calculate_runtime(dat_file)
canonical_solution_max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file)
except:
pass
global_result = {}
completion_memory_usage = {}
execution_time = {}
max_memory_usage = {}
task_idx = {}
for dat_file in glob.glob(os.path.join(dat_directory, "*.dat")):
try:
problem_idx = os.path.basename(dat_file).split('.')[0]
execution_time_result = calculate_runtime(dat_file)
completion_memory_usage[int(problem_idx)] = calculate_memory_usage(dat_file)
execution_time[int(problem_idx)] = calculate_runtime(dat_file)
max_memory_usage[int(problem_idx)] = report_max_memory_usage(dat_file)
task_idx[int(problem_idx)] = dat_file
except Exception as e:
print(dat_file)
global_result[model] = {"completion_memory_usage":completion_memory_usage,"execution_time":execution_time,"max_memory_usage":max_memory_usage,"task_idx":task_idx}
save_results = []
max_net_lists = {}
max_nmu_lists = {}
max_ntmu_lists = {}
for model in global_result.keys():
completion_memory_usage = global_result[model]["completion_memory_usage"]
execution_time = global_result[model]["execution_time"]
max_memory_usage = global_result[model]["max_memory_usage"]
# report execution time
total_execution_time = 0
# report normalized execution time
normalized_execution_time = 0
# report max memory usage
total_max_memory_usage = 0
# report normalized max memory usage
normalized_max_memory_usage = 0
# report memory usage
total_memory_usage = 0
total_canonical_solution_max_memory_usage = 0
total_canonical_solution_execution_time = 0
total_canonical_solution_memory_usage = 0
# report normalized memory usage
normalized_memory_usage = 0
total_codes = 0
normalized_execution_time_list = []
normalized_max_memory_usage_list = []
normalized_memory_usage_list = []
total_fast = 0
total_95 = 0
total_97=0
total_99=0
total_100=0
total_101=0
total_1000=0
total_500=0
category_tmp = {}
total_10000=0
max_net = float("-inf")
max_nmu = float("-inf")
max_tmu = float("-inf")
total_500_net = 0
total_500_nmu = 0
total_500_tmu = 0
# print(len(completion_memory_usage))
for idx in completion_memory_usage.keys():
if idx not in canonical_solution_memory_usage.keys():
continue
total_memory_usage += completion_memory_usage[idx]
total_execution_time += execution_time[idx]
total_max_memory_usage += max_memory_usage[idx]
total_canonical_solution_max_memory_usage+=canonical_solution_max_memory_usage[idx]
total_canonical_solution_memory_usage+=canonical_solution_memory_usage[idx]
total_canonical_solution_execution_time+=canonical_solution_execution_time[idx]
if execution_time[idx]/canonical_solution_execution_time[idx]>5:
total_500_net+=1
if max_net<execution_time[idx]/canonical_solution_execution_time[idx]:
max_net = execution_time[idx]/canonical_solution_execution_time[idx]
normalized_execution_time += execution_time[idx]/canonical_solution_execution_time[idx]
normalized_execution_time_list.append(execution_time[idx]/canonical_solution_execution_time[idx])
if max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]>5:
total_500_nmu+=1
if max_nmu<max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]:
max_nmu = max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]
normalized_max_memory_usage += max_memory_usage[idx]/canonical_solution_max_memory_usage[idx]
normalized_max_memory_usage_list.append(max_memory_usage[idx]/canonical_solution_max_memory_usage[idx])
if completion_memory_usage[idx]/canonical_solution_memory_usage[idx]>5:
total_500_tmu+=1
net = execution_time[idx] / canonical_solution_execution_time[idx]
nmu = completion_memory_usage[idx] / canonical_solution_memory_usage[idx]
ntmu = max_memory_usage[idx] / canonical_solution_max_memory_usage[idx]
normalized_memory_usage += completion_memory_usage[idx]/canonical_solution_memory_usage[idx]
normalized_memory_usage_list.append(completion_memory_usage[idx]/canonical_solution_memory_usage[idx])
if len(max_net_lists) < 10 or net > min(max_net_lists.keys()):
if len(max_net_lists) >= 10:
min_key = min(max_net_lists.keys())
del max_net_lists[min_key]
max_net_lists[net] = (model, idx)
if len(max_nmu_lists) < 10 or nmu > min(max_nmu_lists.keys()):
if len(max_nmu_lists) >= 10:
min_key = min(max_nmu_lists.keys())
del max_nmu_lists[min_key]
max_nmu_lists[nmu] = (model, idx)
if len(max_ntmu_lists) < 10 or ntmu > min(max_ntmu_lists.keys()):
if len(max_ntmu_lists) >= 10:
min_key = min(max_ntmu_lists.keys())
del max_ntmu_lists[min_key]
max_ntmu_lists[ntmu] = (model, idx)
max_tmu = max(max_tmu,completion_memory_usage[idx]/canonical_solution_memory_usage[idx])
total_codes+=1
if len(normalized_execution_time_list)==0:
print(model)
continue
normalized_execution_time = normalized_execution_time/len(normalized_execution_time_list)
normalized_max_memory_usage = normalized_max_memory_usage/len(normalized_execution_time_list)
normalized_memory_usage = normalized_memory_usage/len(normalized_execution_time_list)
total_execution_time = total_execution_time/len(normalized_execution_time_list)
total_memory_usage = total_memory_usage/len(normalized_execution_time_list)
total_max_memory_usage = total_max_memory_usage/len(normalized_execution_time_list)
pass1 = len(completion_memory_usage)/1000*100
total_500_net = total_500_net/len(normalized_execution_time_list)*100
total_500_nmu = total_500_nmu/len(normalized_execution_time_list)*100
total_500_tmu = total_500_tmu/len(normalized_execution_time_list)*100
return f"{model}&{total_execution_time:.2f}&{normalized_execution_time:.2f}&{max_net:.2f}&{total_500_net:.1f}&{total_max_memory_usage:.2f}&{normalized_max_memory_usage:.2f}&{max_nmu:.2f}&{total_500_nmu:.1f}&{total_memory_usage:.2f}&{normalized_memory_usage:.2f}&{max_tmu:.2f}&{total_500_tmu:.1f}&{pass1:.1f}\\\\"
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument("--task", type=str, default="EffiBench")
parse.add_argument("--model", type=str, default="gpt-4")
parse.add_argument("--file", type=str, default="")
args = parse.parse_args()
if not args.file:
args.file = f"./{args.task}_{args.model}.json"
report_results(args.task,args.model, args.file)