|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from vdecoder.nsf_hifigan.nvSTFT import STFT |
|
from vdecoder.nsf_hifigan.models import load_model |
|
from torchaudio.transforms import Resample |
|
|
|
class Enhancer: |
|
def __init__(self, enhancer_type, enhancer_ckpt, device=None): |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = device |
|
|
|
if enhancer_type == 'nsf-hifigan': |
|
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device) |
|
else: |
|
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}") |
|
|
|
self.resample_kernel = {} |
|
self.enhancer_sample_rate = self.enhancer.sample_rate() |
|
self.enhancer_hop_size = self.enhancer.hop_size() |
|
|
|
def enhance(self, |
|
audio, |
|
sample_rate, |
|
f0, |
|
hop_size, |
|
adaptive_key = 0, |
|
silence_front = 0 |
|
): |
|
|
|
start_frame = int(silence_front * sample_rate / hop_size) |
|
real_silence_front = start_frame * hop_size / sample_rate |
|
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ] |
|
f0 = f0[: , start_frame :, :] |
|
|
|
|
|
adaptive_factor = 2 ** ( -adaptive_key / 12) |
|
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100)) |
|
real_factor = self.enhancer_sample_rate / adaptive_sample_rate |
|
|
|
|
|
if sample_rate == adaptive_sample_rate: |
|
audio_res = audio |
|
else: |
|
key_str = str(sample_rate) + str(adaptive_sample_rate) |
|
if key_str not in self.resample_kernel: |
|
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device) |
|
audio_res = self.resample_kernel[key_str](audio) |
|
|
|
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1) |
|
|
|
|
|
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy() |
|
f0_np *= real_factor |
|
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor |
|
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames) |
|
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1]) |
|
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) |
|
|
|
|
|
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res) |
|
|
|
|
|
if adaptive_factor != 0: |
|
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate) |
|
if key_str not in self.resample_kernel: |
|
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device) |
|
enhanced_audio = self.resample_kernel[key_str](enhanced_audio) |
|
|
|
|
|
if start_frame > 0: |
|
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0)) |
|
|
|
return enhanced_audio, enhancer_sample_rate |
|
|
|
|
|
class NsfHifiGAN(torch.nn.Module): |
|
def __init__(self, model_path, device=None): |
|
super().__init__() |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = device |
|
print('| Load HifiGAN: ', model_path) |
|
self.model, self.h = load_model(model_path, device=self.device) |
|
|
|
def sample_rate(self): |
|
return self.h.sampling_rate |
|
|
|
def hop_size(self): |
|
return self.h.hop_size |
|
|
|
def forward(self, audio, f0): |
|
stft = STFT( |
|
self.h.sampling_rate, |
|
self.h.num_mels, |
|
self.h.n_fft, |
|
self.h.win_size, |
|
self.h.hop_size, |
|
self.h.fmin, |
|
self.h.fmax) |
|
with torch.no_grad(): |
|
mel = stft.get_mel(audio) |
|
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1) |
|
return enhanced_audio, self.h.sampling_rate |