|
import io |
|
import numpy as np |
|
import soundfile |
|
from flask import Flask, request, send_file |
|
|
|
from inference import infer_tool |
|
from inference import slicer |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
@app.route("/wav2wav", methods=["POST"]) |
|
def wav2wav(): |
|
request_form = request.form |
|
audio_path = request_form.get("audio_path", None) |
|
tran = int(float(request_form.get("tran", 0))) |
|
spk = request_form.get("spk", 0) |
|
wav_format = request_form.get("wav_format", 'wav') |
|
infer_tool.format_wav(audio_path) |
|
chunks = slicer.cut(audio_path, db_thresh=-40) |
|
audio_data, audio_sr = slicer.chunks2audio(audio_path, chunks) |
|
|
|
audio = [] |
|
for (slice_tag, data) in audio_data: |
|
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') |
|
|
|
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) |
|
if slice_tag: |
|
print('jump empty segment') |
|
_audio = np.zeros(length) |
|
else: |
|
|
|
pad_len = int(audio_sr * 0.5) |
|
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])]) |
|
raw_path = io.BytesIO() |
|
soundfile.write(raw_path, data, audio_sr, format="wav") |
|
raw_path.seek(0) |
|
out_audio, out_sr = svc_model.infer(spk, tran, raw_path) |
|
svc_model.clear_empty() |
|
_audio = out_audio.cpu().numpy() |
|
pad_len = int(svc_model.target_sample * 0.5) |
|
_audio = _audio[pad_len:-pad_len] |
|
|
|
audio.extend(list(infer_tool.pad_array(_audio, length))) |
|
out_wav_path = io.BytesIO() |
|
soundfile.write(out_wav_path, audio, svc_model.target_sample, format=wav_format) |
|
out_wav_path.seek(0) |
|
return send_file(out_wav_path, download_name=f"temp.{wav_format}", as_attachment=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
model_name = "logs/44k/G_60000.pth" |
|
config_name = "configs/config.json" |
|
svc_model = infer_tool.Svc(model_name, config_name) |
|
app.run(port=1145, host="0.0.0.0", debug=False, threaded=False) |
|
|