|
from typing import Optional,Union |
|
try: |
|
from typing import Literal |
|
except Exception as e: |
|
from typing_extensions import Literal |
|
import numpy as np |
|
import torch |
|
import torchcrepe |
|
from torch import nn |
|
from torch.nn import functional as F |
|
import scipy |
|
|
|
|
|
|
|
def repeat_expand( |
|
content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest" |
|
): |
|
"""Repeat content to target length. |
|
This is a wrapper of torch.nn.functional.interpolate. |
|
|
|
Args: |
|
content (torch.Tensor): tensor |
|
target_len (int): target length |
|
mode (str, optional): interpolation mode. Defaults to "nearest". |
|
|
|
Returns: |
|
torch.Tensor: tensor |
|
""" |
|
|
|
ndim = content.ndim |
|
|
|
if content.ndim == 1: |
|
content = content[None, None] |
|
elif content.ndim == 2: |
|
content = content[None] |
|
|
|
assert content.ndim == 3 |
|
|
|
is_np = isinstance(content, np.ndarray) |
|
if is_np: |
|
content = torch.from_numpy(content) |
|
|
|
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) |
|
|
|
if is_np: |
|
results = results.numpy() |
|
|
|
if ndim == 1: |
|
return results[0, 0] |
|
elif ndim == 2: |
|
return results[0] |
|
|
|
|
|
class BasePitchExtractor: |
|
def __init__( |
|
self, |
|
hop_length: int = 512, |
|
f0_min: float = 50.0, |
|
f0_max: float = 1100.0, |
|
keep_zeros: bool = True, |
|
): |
|
"""Base pitch extractor. |
|
|
|
Args: |
|
hop_length (int, optional): Hop length. Defaults to 512. |
|
f0_min (float, optional): Minimum f0. Defaults to 50.0. |
|
f0_max (float, optional): Maximum f0. Defaults to 1100.0. |
|
keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True. |
|
""" |
|
|
|
self.hop_length = hop_length |
|
self.f0_min = f0_min |
|
self.f0_max = f0_max |
|
self.keep_zeros = keep_zeros |
|
|
|
def __call__(self, x, sampling_rate=44100, pad_to=None): |
|
raise NotImplementedError("BasePitchExtractor is not callable.") |
|
|
|
def post_process(self, x, sampling_rate, f0, pad_to): |
|
if isinstance(f0, np.ndarray): |
|
f0 = torch.from_numpy(f0).float().to(x.device) |
|
|
|
if pad_to is None: |
|
return f0 |
|
|
|
f0 = repeat_expand(f0, pad_to) |
|
|
|
if self.keep_zeros: |
|
return f0 |
|
|
|
vuv_vector = torch.zeros_like(f0) |
|
vuv_vector[f0 > 0.0] = 1.0 |
|
vuv_vector[f0 <= 0.0] = 0.0 |
|
|
|
|
|
nzindex = torch.nonzero(f0).squeeze() |
|
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() |
|
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() |
|
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate |
|
|
|
if f0.shape[0] <= 0: |
|
return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device) |
|
|
|
if f0.shape[0] == 1: |
|
return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device) |
|
|
|
|
|
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) |
|
vuv_vector = vuv_vector.cpu().numpy() |
|
vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) |
|
|
|
return f0,vuv_vector |
|
|
|
|
|
class MaskedAvgPool1d(nn.Module): |
|
def __init__( |
|
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0 |
|
): |
|
"""An implementation of mean pooling that supports masked values. |
|
|
|
Args: |
|
kernel_size (int): The size of the median pooling window. |
|
stride (int, optional): The stride of the median pooling window. Defaults to None. |
|
padding (int, optional): The padding of the median pooling window. Defaults to 0. |
|
""" |
|
|
|
super(MaskedAvgPool1d, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.stride = stride or kernel_size |
|
self.padding = padding |
|
|
|
def forward(self, x, mask=None): |
|
ndim = x.dim() |
|
if ndim == 2: |
|
x = x.unsqueeze(1) |
|
|
|
assert ( |
|
x.dim() == 3 |
|
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)" |
|
|
|
|
|
if mask is None: |
|
mask = ~torch.isnan(x) |
|
|
|
|
|
assert x.shape == mask.shape, "Input tensor and mask must have the same shape" |
|
|
|
masked_x = torch.where(mask, x, torch.zeros_like(x)) |
|
|
|
ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device) |
|
|
|
|
|
sum_pooled = nn.functional.conv1d( |
|
masked_x, |
|
ones_kernel, |
|
stride=self.stride, |
|
padding=self.padding, |
|
groups=x.size(1), |
|
) |
|
|
|
|
|
valid_count = nn.functional.conv1d( |
|
mask.float(), |
|
ones_kernel, |
|
stride=self.stride, |
|
padding=self.padding, |
|
groups=x.size(1), |
|
) |
|
valid_count = valid_count.clamp(min=1) |
|
|
|
|
|
avg_pooled = sum_pooled / valid_count |
|
|
|
|
|
avg_pooled[avg_pooled == 0] = float("nan") |
|
|
|
if ndim == 2: |
|
return avg_pooled.squeeze(1) |
|
|
|
return avg_pooled |
|
|
|
|
|
class MaskedMedianPool1d(nn.Module): |
|
def __init__( |
|
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0 |
|
): |
|
"""An implementation of median pooling that supports masked values. |
|
|
|
This implementation is inspired by the median pooling implementation in |
|
https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598 |
|
|
|
Args: |
|
kernel_size (int): The size of the median pooling window. |
|
stride (int, optional): The stride of the median pooling window. Defaults to None. |
|
padding (int, optional): The padding of the median pooling window. Defaults to 0. |
|
""" |
|
|
|
super(MaskedMedianPool1d, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.stride = stride or kernel_size |
|
self.padding = padding |
|
|
|
def forward(self, x, mask=None): |
|
ndim = x.dim() |
|
if ndim == 2: |
|
x = x.unsqueeze(1) |
|
|
|
assert ( |
|
x.dim() == 3 |
|
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)" |
|
|
|
if mask is None: |
|
mask = ~torch.isnan(x) |
|
|
|
assert x.shape == mask.shape, "Input tensor and mask must have the same shape" |
|
|
|
masked_x = torch.where(mask, x, torch.zeros_like(x)) |
|
|
|
x = F.pad(masked_x, (self.padding, self.padding), mode="reflect") |
|
mask = F.pad( |
|
mask.float(), (self.padding, self.padding), mode="constant", value=0 |
|
) |
|
|
|
x = x.unfold(2, self.kernel_size, self.stride) |
|
mask = mask.unfold(2, self.kernel_size, self.stride) |
|
|
|
x = x.contiguous().view(x.size()[:3] + (-1,)) |
|
mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device) |
|
|
|
|
|
|
|
x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device)) |
|
|
|
|
|
x_sorted, _ = torch.sort(x_masked, dim=-1) |
|
|
|
|
|
valid_count = mask.sum(dim=-1) |
|
|
|
|
|
median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0) |
|
|
|
|
|
median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1) |
|
|
|
|
|
median_pooled[torch.isinf(median_pooled)] = float("nan") |
|
|
|
if ndim == 2: |
|
return median_pooled.squeeze(1) |
|
|
|
return median_pooled |
|
|
|
|
|
class CrepePitchExtractor(BasePitchExtractor): |
|
def __init__( |
|
self, |
|
hop_length: int = 512, |
|
f0_min: float = 50.0, |
|
f0_max: float = 1100.0, |
|
threshold: float = 0.05, |
|
keep_zeros: bool = False, |
|
device = None, |
|
model: Literal["full", "tiny"] = "full", |
|
use_fast_filters: bool = True, |
|
): |
|
super().__init__(hop_length, f0_min, f0_max, keep_zeros) |
|
|
|
self.threshold = threshold |
|
self.model = model |
|
self.use_fast_filters = use_fast_filters |
|
self.hop_length = hop_length |
|
if device is None: |
|
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
else: |
|
self.dev = torch.device(device) |
|
if self.use_fast_filters: |
|
self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device) |
|
self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device) |
|
|
|
def __call__(self, x, sampling_rate=44100, pad_to=None): |
|
"""Extract pitch using crepe. |
|
|
|
|
|
Args: |
|
x (torch.Tensor): Audio signal, shape (1, T). |
|
sampling_rate (int, optional): Sampling rate. Defaults to 44100. |
|
pad_to (int, optional): Pad to length. Defaults to None. |
|
|
|
Returns: |
|
torch.Tensor: Pitch, shape (T // hop_length,). |
|
""" |
|
|
|
assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor." |
|
assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels." |
|
|
|
x = x.to(self.dev) |
|
f0, pd = torchcrepe.predict( |
|
x, |
|
sampling_rate, |
|
self.hop_length, |
|
self.f0_min, |
|
self.f0_max, |
|
pad=True, |
|
model=self.model, |
|
batch_size=1024, |
|
device=x.device, |
|
return_periodicity=True, |
|
) |
|
|
|
|
|
if self.use_fast_filters: |
|
pd = self.median_filter(pd) |
|
else: |
|
pd = torchcrepe.filter.median(pd, 3) |
|
|
|
pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512) |
|
f0 = torchcrepe.threshold.At(self.threshold)(f0, pd) |
|
|
|
if self.use_fast_filters: |
|
f0 = self.mean_filter(f0) |
|
else: |
|
f0 = torchcrepe.filter.mean(f0, 3) |
|
|
|
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0] |
|
|
|
return self.post_process(x, sampling_rate, f0, pad_to) |
|
|