File size: 1,463 Bytes
031e5e2
 
 
 
 
 
 
 
 
 
927f30d
 
031e5e2
 
 
 
 
 
927f30d
 
 
 
 
 
031e5e2
 
927f30d
 
031e5e2
 
 
 
6d737a4
 
 
927f30d
 
 
 
6d737a4
 
031e5e2
6d737a4
031e5e2
927f30d
 
b8f6c0c
927f30d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
from utils.tapp_classifier import load_tappClassifier, tapp_classification 
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
    is_list_like)

# Declare all the necessary variables
tapp_classifier_identifier = 'tapp'
param1  = get_classifier_params(tapp_classifier_identifier)

def app():
    ### Main app code ###
    with st.container():
        if 'key0' in st.session_state:
            df = st.session_state.key0

            #load Classifiers
            classifier = load_tappClassifier(classifier_name=param1['model_name'])
            st.session_state['{}_classifier'.format(tapp_classifier_identifier)] = classifier
            
            if len(df) > 100:
                warning_msg = ": This might take sometime, please sit back and relax."
            else:
                warning_msg = ""
                
            tapp_classification(haystack_doc=df,
                                    threshold= param1['threshold'])

            #st.session_state.key1 = df