Spaces:
Sleeping
Sleeping
File size: 9,310 Bytes
dd9d907 34bb96a dd9d907 34bb96a bab025f 3d4af36 dd9d907 e709ac4 8e2c226 b1cdd9e bab025f 11700c3 7043f03 bab025f 456a6c2 bab025f 456a6c2 bab025f ef4f9a5 8ece733 b1cdd9e f675a8b b1cdd9e 2549884 6919d03 0e3eb4d 9a66d81 bab025f 9a66d81 bab025f 9a66d81 bab025f 9a66d81 bab025f 9a66d81 34bb96a 9a66d81 bab025f 9a66d81 bab025f 9a66d81 bab025f 34bb96a bab025f 6d1e8b9 34bb96a 6d1e8b9 34bb96a bab025f 34bb96a 11700c3 bab025f 34bb96a 11700c3 34bb96a 6919d03 dd9d907 6919d03 11700c3 6919d03 dd9d907 11700c3 bab025f 11700c3 0e3eb4d 98c777a dd9d907 bab025f 11700c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
from langchain_groq import ChatGroq
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
from langchain.chains import GraphQAChain
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Pinecone
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain_core.documents import Document
from neo4j import GraphDatabase
import networkx as nx
import pinecone
import os
import os
from datetime import datetime
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from typing import Optional, List, Dict, Any
from pydantic import BaseModel, Field
import time
import tracemalloc
# Custom Configuration for Pydantic
class Config:
arbitrary_types_allowed = True
# Define base models for type validation
class CustomDocument(BaseModel):
page_content: str
metadata: Dict[str, Any] = Field(default_factory=dict)
class Config(Config):
pass
os.system("pip install sentence-transformers")
os.system("pip install gspread oauth2client")
os.system("pip install -U langchain-huggingface langchain-community")
# Google Sheets Setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name(r"./gen-lang-client-0300122402-f2f67b3e8c27.json", scope)
client = gspread.authorize(creds)
spreadsheet_id = "10953i4ZOhvpNAyyrFdo-4TvVwfVWppt0H2xXM7yYQF4"
sheet = client.open_by_key(spreadsheet_id).sheet1
def store_feedback_in_sheet(feedback, question, rag_response, graphrag_response):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
row = [timestamp, question, rag_response, graphrag_response, feedback]
sheet.append_row(row)
def load_data():
data = sheet.get_all_records()
return data[-10:], len(data)
def add_review(question, rag_response, graphrag_response, feedback):
store_feedback_in_sheet(feedback, question, rag_response, graphrag_response)
return load_data()
# RAG Setup
text_path = r"./text_chunks.txt"
loader = TextLoader(text_path, encoding='utf-8')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=4)
docs = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings()
# Hugging Face Setup
repo_id = "meta-llama/Meta-Llama-3-8B"
llm = HuggingFaceHub(
repo_id=repo_id,
model_kwargs={"temperature": 0.8, "top_k": 50},
huggingfacehub_api_token=os.getenv('HUGGINGFACEHUB_API_TOKEN')
)
# Pinecone Setup
pinecone.init(
api_key=os.getenv('PINECONE_API_KEY', '6396a319-9bc0-49b2-97ba-400e96eff377'),
environment='gcp-starter'
)
index_name = "langchain-demo"
if index_name not in pinecone.list_indexes():
pinecone.create_index(name=index_name, metric="cosine", dimension=768)
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)
else:
docsearch = Pinecone.from_existing_index(index_name, embeddings)
# Setup LLMs
rag_llm = ChatGroq(
model="Llama3-8b-8192",
temperature=0,
groq_api_key='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'
)
template = """
You are a Thai rice assistant. These humans will ask you questions about Thai rice.
Answer the question only in Thai language.
Use the following piece of context to answer the question.
If you don't know the answer, just say you don't know.
Keep the answer within 2 sentences and concise.
Context: {context}
Question: {question}
Answer:
"""
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
# Modified RAG chain setup
def get_context(question: str) -> str:
docs = docsearch.similarity_search(question)
return " ".join([doc.page_content for doc in docs])
def get_rag_response(question: str) -> str:
context = get_context(question)
response = rag_llm.predict(prompt.format(context=context, question=question))
return response
# Graph RAG Setup
graphrag_llm = ChatGroq(
model="Llama3-8b-8192",
temperature=0,
groq_api_key='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'
)
# Neo4j Setup
uri = "neo4j+s://86a1bbb8.databases.neo4j.io"
user = "neo4j"
password = "zURGb3tO9VFtKxPEw98WrQnphvJQbBDofDM9uG3O8O8"
driver = GraphDatabase.driver(uri, auth=(user, password))
def fetch_nodes(tx):
query = "MATCH (n) RETURN id(n) AS id, labels(n) AS labels"
result = tx.run(query)
return result.data()
def fetch_relationships(tx):
query = "MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS relation"
result = tx.run(query)
return result.data()
def populate_networkx_graph():
G = nx.Graph()
with driver.session() as session:
nodes = session.execute_read(fetch_nodes)
relationships = session.execute_read(fetch_relationships)
for node in nodes:
G.add_node(node['id'], labels=node['labels'])
for relationship in relationships:
G.add_edge(
relationship['source'],
relationship['target'],
relation=relationship['relation']
)
return G
networkx_graph = populate_networkx_graph()
graph = NetworkxEntityGraph()
graph._graph = networkx_graph
graphrag_chain = GraphQAChain.from_llm(
llm=graphrag_llm,
graph=graph,
verbose=True
)
# Define functions to measure memory and time
def measure_memory_and_time(func):
def wrapper(*args, **kwargs):
tracemalloc.start() # Start memory tracking
start_time = time.time() # Start time tracking
result = func(*args, **kwargs)
current, peak = tracemalloc.get_traced_memory() # Get memory usage
tracemalloc.stop()
end_time = time.time() # End time tracking
elapsed_time = end_time - start_time # Calculate elapsed time
return result, elapsed_time, peak / 1024 # Convert memory to KB
return wrapper
# Modified functions to use memory and time measurement
@measure_memory_and_time
def get_rag_response(question: str) -> str:
context = get_context(question)
response = rag_llm.predict(prompt.format(context=context, question=question))
return response
@measure_memory_and_time
def get_graphrag_response(question: str) -> str:
system_prompt = "You are a Thai rice assistant that gives concise and direct answers. Do not explain the process, just provide the answer, provide the answer only in Thai."
formatted_question = f"System Prompt: {system_prompt}\n\nQuestion: {question}"
response = graphrag_chain.run(formatted_question)
return response
# Modify compare_models to collect and display metrics
def compare_models(question: str) -> dict:
rag_response, rag_time, rag_memory = get_rag_response(question)
graphrag_response, graphrag_time, graphrag_memory = get_graphrag_response(question)
# Combine responses with metrics
results = {
"RAG Response": rag_response,
"RAG Time (s)": round(rag_time, 2),
"RAG Memory (KB)": round(rag_memory, 2),
"GraphRAG Response": graphrag_response,
"GraphRAG Time (s)": round(graphrag_time, 2),
"GraphRAG Memory (KB)": round(graphrag_memory, 2),
}
return results
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="ถามคำถามเกี่ยวกับข้าว:", placeholder="Enter your question about Thai rice")
submit_btn = gr.Button(value="ถาม")
rag_output = gr.Textbox(label="RAG Response", interactive=False)
rag_time_output = gr.Textbox(label="RAG Time (s)", interactive=False)
rag_memory_output = gr.Textbox(label="RAG Memory (KB)", interactive=False)
graphrag_output = gr.Textbox(label="GraphRAG Response", interactive=False)
graphrag_time_output = gr.Textbox(label="GraphRAG Time (s)", interactive=False)
graphrag_memory_output = gr.Textbox(label="GraphRAG Memory (KB)", interactive=False)
feedback = gr.Radio(label="Which response is better?", choices=["A ดีกว่า", "B ดีกว่า", "เท่ากัน", "แย่ทั้งคู่"])
submit_feedback = gr.Button(value="Submit Feedback")
# Update Gradio app with time and memory results
def display_results(question):
results = compare_models(question)
return (
results["RAG Response"], results["RAG Time (s)"], results["RAG Memory (KB)"],
results["GraphRAG Response"], results["GraphRAG Time (s)"], results["GraphRAG Memory (KB)"]
)
# Event handlers
submit_btn.click(
fn=display_results,
inputs=[question_input],
outputs=[rag_output, rag_time_output, rag_memory_output, graphrag_output, graphrag_time_output, graphrag_memory_output]
)
submit_feedback.click(fn=add_review, inputs=[question_input, rag_output, graphrag_output, feedback])
demo.load(fn=load_data, inputs=None)
# Launch the app
if __name__ == "__main__":
demo.launch()
|