File size: 9,467 Bytes
9f36753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "import csv\n",
    "\n",
    "def get_products(stores_ids, province):\n",
    "    url = \"https://d3e6htiiul5ek9.cloudfront.net/prod/productos\"\n",
    "    params = {\n",
    "        \"string\": \"stevia\",\n",
    "        \"array_sucursales\":stores_ids,\n",
    "        \"offset\": 0,\n",
    "        \"limit\": 50,\n",
    "        \"sort\": \"-cant_sucursales_disponible\"\n",
    "    }\n",
    "\n",
    "    headers = {\n",
    "        \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:128.0) Gecko/20100101 Firefox/128.0\",\n",
    "        \"Accept\": \"application/json, text/plain, */*\",\n",
    "        \"Accept-Language\": \"en-US,en;q=0.5\",\n",
    "        \"Accept-Encoding\": \"gzip, deflate, br, zstd\",\n",
    "        \"Origin\": \"https://www.preciosclaros.gob.ar\",\n",
    "        \"Connection\": \"keep-alive\",\n",
    "        \"Referer\": \"https://www.preciosclaros.gob.ar/\",\n",
    "        \"Sec-Fetch-Dest\": \"empty\",\n",
    "        \"Sec-Fetch-Mode\": \"cors\",\n",
    "        \"Sec-Fetch-Site\": \"cross-site\",\n",
    "        \"TE\": \"trailers\"\n",
    "    }\n",
    "\n",
    "    response = requests.get(url, params=params, headers=headers)\n",
    "\n",
    "    productos = response.json()[\"productos\"]\n",
    "\n",
    "    with open(\"Products.csv\", \"a\", newline=\"\", encoding='UTF-8') as file:\n",
    "        #check if it's empty\n",
    "        writer = csv.writer(file)\n",
    "        if file.tell() == 0:\n",
    "\n",
    "            writer.writerow(list(productos[0].keys()) + [\"provincia\"])\n",
    "        for producto in productos:\n",
    "            writer.writerow(list(producto.values()) + [province])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "import csv\n",
    "\n",
    "def get_specific_products(stores, id):\n",
    "    url = \"https://d3e6htiiul5ek9.cloudfront.net/prod/producto\"\n",
    "    params = {\n",
    "        \"limit\": 30,\n",
    "        \"id_producto\": id,\n",
    "        \"array_sucursales\": stores\n",
    "}\n",
    "\n",
    "    headers = {\n",
    "        \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:128.0) Gecko/20100101 Firefox/128.0\",\n",
    "        \"Accept\": \"application/json, text/plain, */*\",\n",
    "        \"Accept-Language\": \"en-US,en;q=0.5\",\n",
    "        \"Accept-Encoding\": \"gzip, deflate, br, zstd\",\n",
    "        \"Origin\": \"https://www.preciosclaros.gob.ar\",\n",
    "        \"Connection\": \"keep-alive\",\n",
    "        \"Referer\": \"https://www.preciosclaros.gob.ar/\",\n",
    "        \"Sec-Fetch-Dest\": \"empty\",\n",
    "        \"Sec-Fetch-Mode\": \"cors\",\n",
    "        \"Sec-Fetch-Site\": \"cross-site\",\n",
    "        \"TE\": \"trailers\"\n",
    "    }\n",
    "\n",
    "    response = requests.get(url, params=params, headers=headers)\n",
    "\n",
    "    response = response.json()\n",
    "    producto = response['producto']\n",
    "    with open(\"Store-Products.csv\", \"a\", newline=\"\", encoding='UTF-8') as file:\n",
    "        #check if it's empty\n",
    "        writer = csv.writer(file)\n",
    "        if file.tell() == 0:\n",
    "            writer.writerow(['id_producto','marca_producto', 'nombre_producto','presentacion_producto','id_sucursal', 'precio_lista','promocion','promocion_descripcion'])\n",
    "        for sucursal in response['sucursales']:\n",
    "            if \"message\" not in sucursal:\n",
    "                precios = sucursal['preciosProducto']\n",
    "                precio_lista = precios['precioLista']\n",
    "                if'promo1' in precios:\n",
    "                    promocion = precios['promo1']['precio']\n",
    "                    descripcion_promocion = precios['promo1']['descripcion']\n",
    "                else:\n",
    "                    promocion=None\n",
    "                    descripcion_promocion=None\n",
    "\n",
    "                writer.writerow([producto['id'], producto['marca'], producto['nombre'], producto['presentacion'], str(sucursal['comercioId'])+'-'+str(sucursal['banderaId'])+'-'+str(sucursal['id']), precio_lista, promocion, descripcion_promocion])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "# Leer el archivo CSV\n",
    "df = pd.read_csv(\"sucursales.csv\")\n",
    "#obtengo todas las provincias\n",
    "provinces = df['provincia'].unique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Obtener los ids de sucursales de una misma marca en distintas partes del pais\n",
    "for province in provinces:\n",
    "    stores = df[df['provincia'] == province]\n",
    "    ids_stores = stores['id'].tolist()\n",
    "    ids_stores_str = ','.join(ids_stores)\n",
    "    \n",
    "    get_products(ids_stores_str, province)\n",
    "    \n",
    "#ids_stores tiene los ids ordenados por cada provincia\n",
    "\n",
    "#obtengo los productos de cada surucsal"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Empiezo a trabajar en el dataset de productos\n",
    "import pandas as pd\n",
    "df = pd.read_csv(\"Products.csv\")\n",
    "\n",
    "#drop \"CLIGHT\" products\"\n",
    "df = df[df['marca'] != \"CLIGHT\"]\n",
    "#drop \"CUARTO CRECIENTE\" products\n",
    "df = df[df['marca'] != \"CUARTO CRECIENTE\"]\n",
    "\n",
    "df = df[df['marca'] != \"CUARTOCRECIENTE\"]\n",
    "\n",
    "df = df[df['marca'] != \"TRINI\"]\n",
    "\n",
    "df = df[df['marca'] != \"ENTRE NUTS\"]\n",
    "\n",
    "df = df[df['marca'] != \"VIGENTE\"]\n",
    "\n",
    "\n",
    "\n",
    "df.to_csv(\"Products.csv\", index=False)\n",
    "\n",
    "#remove duplicates\n",
    "\n",
    "df = pd.read_csv(\"Products.csv\")\n",
    "\n",
    "#remove columns\n",
    "df = df.drop(columns=['precioMin','precioMax','cantSucursalesDisponible','provincia'])\n",
    "\n",
    "df = df.drop_duplicates()\n",
    "\n",
    "df.to_csv(\"Products_unique.csv\", index=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Obtener los ids de productos de interes\n",
    "ledesma_200_u = 7799086000198\n",
    "competitors_ledesma_200_u = [7794940000772, 7792129003507, 7792129003644, 7790150812785]\n",
    "#recorriendo cada una de esas sucursales, y obteniendo los productos similares\n",
    "ledesma_100_u = 7799086000051\n",
    "competitors_ledesma_100_u = [7794940000765, 7792129003637, 7791720030509, 7790150812761]\n",
    "\n",
    "ledesma_50_u = 7799086000266\n",
    "competitors_ledesma_50_u = [7792129003620, 7791720030493, 7794940000758, 7790150812747]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Recorrer cada una de las sucursales de la marca\n",
    "for province in provinces:\n",
    "    stores = df[df['provincia'] == province]\n",
    "    ids_stores = stores['id'].tolist()\n",
    "    ids_stores_str = ','.join(ids_stores)\n",
    "    #ledesma 200 u\n",
    "    get_specific_products(ids_stores_str, ledesma_200_u)\n",
    "    for competitor_ledesma_200_u in competitors_ledesma_200_u:\n",
    "        get_specific_products(ids_stores_str, competitor_ledesma_200_u)\n",
    "    #ledesma 100 u\n",
    "    get_specific_products(ids_stores_str, ledesma_100_u)\n",
    "    for competitor_ledesma_100_u in competitors_ledesma_100_u:\n",
    "        get_specific_products(ids_stores_str, competitor_ledesma_100_u)\n",
    "    #ledesma 50 u\n",
    "    get_specific_products(ids_stores_str, ledesma_50_u)\n",
    "    for competitor_ledesma_50_u in competitors_ledesma_50_u:\n",
    "        get_specific_products(ids_stores_str, competitor_ledesma_50_u)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Almacenar los datos en un csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Comparar los productos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}