File size: 5,383 Bytes
39cdc68
 
 
7a18648
 
 
 
 
 
 
 
 
 
39cdc68
 
 
 
 
 
 
 
 
 
 
d7be2f6
39cdc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855e819
 
 
 
 
 
 
d8baab8
 
 
 
 
 
9f12b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39cdc68
85f061d
39cdc68
 
9f12b81
 
39cdc68
85f061d
 
9f12b81
 
 
 
 
 
 
 
39cdc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f12b81
39cdc68
 
 
9f12b81
 
39cdc68
 
9f12b81
 
 
50b35d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy as np
import streamlit as st
import tensorflow as tf
import numpy as np
import keras
import matplotlib.pyplot as plt
import pandas as pd
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import cv2
import torch
from skorch import NeuralNetClassifier
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
mnist = fetch_openml('mnist_784', as_frame=False, cache=False)
X = mnist.data.astype('float32')
y = mnist.target.astype('int64')
X /= 255.0


#device = 'cuda' if torch.cuda.is_available() else 'cpu'
XCnn = X.reshape(-1, 1, 28, 28)
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42)

from PIL import Image
import torchvision.transforms as transforms
class Cnn(nn.Module):
    def __init__(self, dropout=0.5):
        super(Cnn, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv2_drop = nn.Dropout2d(p=dropout)
        self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
        self.fc2 = nn.Linear(100, 10)
        self.fc1_drop = nn.Dropout(p=dropout)

    def forward(self, x):
        x = torch.relu(F.max_pool2d(self.conv1(x), 2))
        x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        # flatten over channel, height and width = 1600
        x = x.view(-1, x.size(1) * x.size(2) * x.size(3))

        x = torch.relu(self.fc1_drop(self.fc1(x)))
        x = torch.softmax(self.fc2(x), dim=-1)
        return x
torch.manual_seed(0)


# # Create an instance of your model
# model = NeuralNetClassifier(
#     Cnn,
#     max_epochs=10,
#     lr=0.002,
#     optimizer=torch.optim.Adam,
#     device=device,
import streamlit as st
import torch
from PIL import Image
import cv2
import numpy as np


#device = 'cuda' if torch.cuda.is_available() else 'cpu'
XCnn = X.reshape(-1, 1, 28, 28)
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42)

from PIL import Image
import torchvision.transforms as transforms
class Cnn(nn.Module):
    def __init__(self, dropout=0.5):
        super(Cnn, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv2_drop = nn.Dropout2d(p=dropout)
        self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
        self.fc2 = nn.Linear(100, 10)
        self.fc1_drop = nn.Dropout(p=dropout)

    def forward(self, x):
        x = torch.relu(F.max_pool2d(self.conv1(x), 2))
        x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        # flatten over channel, height and width = 1600
        x = x.view(-1, x.size(1) * x.size(2) * x.size(3))

        x = torch.relu(self.fc1_drop(self.fc1(x)))
        x = torch.softmax(self.fc2(x), dim=-1)
        return x
torch.manual_seed(0)


# # Create an instance of your model
# model = NeuralNetClassifier(
#     Cnn,
#     max_epochs=10,
#     lr=0.002,
#     optimizer=torch.optim.Adam,
#     device=device,
# )
model=Cnn()

# Specify the path to the saved model weights
model_weights_path = 'model_weights.pth'

# Load the model weights
model.load_state_dict(torch.load(model_weights_path,map_location=torch.device('cpu')))

# Set the model to evaluation mode for inference
model.eval()
# Create a NeuralNetClassifier using the loaded model
cnn = NeuralNetClassifier(
    module=model,
    max_epochs=0,  # Set max_epochs to 0 to avoid additional training
    lr=0.002,  # You can set this to the learning rate used during training
    optimizer=torch.optim.Adam,  # You can set the optimizer used during training
    device='cpu'  # You can specify the device ('cpu' for CPU, 'cuda' for GPU, etc.)
)

stroke_width = st.sidebar.slider("Stroke width: ", 1, 35, 32)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
drawing_mode = st.sidebar.selectbox(
    "Drawing tool:", ("freedraw", "line", "rect", "circle", "transform", "polygon")
)
realtime_update = st.sidebar.checkbox("Update in realtime", True)

# Create a canvas component
canvas_result = st_canvas(
    fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
    stroke_width=stroke_width,
    stroke_color=stroke_color,
    background_color=bg_color,
    background_image=Image.open(bg_image) if bg_image else None,
    update_streamlit=realtime_update,
    height=300,
    drawing_mode=drawing_mode,
    display_toolbar=st.sidebar.checkbox("Display toolbar", True),
    key="full_app",
)

# Do something interesting with the image data and paths
if canvas_result.image_data is not None:
    #st.image(canvas_result.image_data)
    image = canvas_result.image_data
    image1 = image.copy()
    image1 = image1.astype('uint8')
    image1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
    image1 = cv2.resize(image1,(28,28))
    st.image(image1)

    image1.resize(1,1,28,28)
    st.title(np.argmax(cnn.predict(image1)))
if canvas_result.json_data is not None:
    st.dataframe(pd.json_normalize(canvas_result.json_data["objects"]))