File size: 5,383 Bytes
39cdc68 7a18648 39cdc68 d7be2f6 39cdc68 855e819 d8baab8 9f12b81 39cdc68 85f061d 39cdc68 9f12b81 39cdc68 85f061d 9f12b81 39cdc68 9f12b81 39cdc68 9f12b81 39cdc68 9f12b81 50b35d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy as np
import streamlit as st
import tensorflow as tf
import numpy as np
import keras
import matplotlib.pyplot as plt
import pandas as pd
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import cv2
import torch
from skorch import NeuralNetClassifier
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
mnist = fetch_openml('mnist_784', as_frame=False, cache=False)
X = mnist.data.astype('float32')
y = mnist.target.astype('int64')
X /= 255.0
#device = 'cuda' if torch.cuda.is_available() else 'cpu'
XCnn = X.reshape(-1, 1, 28, 28)
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42)
from PIL import Image
import torchvision.transforms as transforms
class Cnn(nn.Module):
def __init__(self, dropout=0.5):
super(Cnn, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.conv2_drop = nn.Dropout2d(p=dropout)
self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
self.fc2 = nn.Linear(100, 10)
self.fc1_drop = nn.Dropout(p=dropout)
def forward(self, x):
x = torch.relu(F.max_pool2d(self.conv1(x), 2))
x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
# flatten over channel, height and width = 1600
x = x.view(-1, x.size(1) * x.size(2) * x.size(3))
x = torch.relu(self.fc1_drop(self.fc1(x)))
x = torch.softmax(self.fc2(x), dim=-1)
return x
torch.manual_seed(0)
# # Create an instance of your model
# model = NeuralNetClassifier(
# Cnn,
# max_epochs=10,
# lr=0.002,
# optimizer=torch.optim.Adam,
# device=device,
import streamlit as st
import torch
from PIL import Image
import cv2
import numpy as np
#device = 'cuda' if torch.cuda.is_available() else 'cpu'
XCnn = X.reshape(-1, 1, 28, 28)
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42)
from PIL import Image
import torchvision.transforms as transforms
class Cnn(nn.Module):
def __init__(self, dropout=0.5):
super(Cnn, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.conv2_drop = nn.Dropout2d(p=dropout)
self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
self.fc2 = nn.Linear(100, 10)
self.fc1_drop = nn.Dropout(p=dropout)
def forward(self, x):
x = torch.relu(F.max_pool2d(self.conv1(x), 2))
x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
# flatten over channel, height and width = 1600
x = x.view(-1, x.size(1) * x.size(2) * x.size(3))
x = torch.relu(self.fc1_drop(self.fc1(x)))
x = torch.softmax(self.fc2(x), dim=-1)
return x
torch.manual_seed(0)
# # Create an instance of your model
# model = NeuralNetClassifier(
# Cnn,
# max_epochs=10,
# lr=0.002,
# optimizer=torch.optim.Adam,
# device=device,
# )
model=Cnn()
# Specify the path to the saved model weights
model_weights_path = 'model_weights.pth'
# Load the model weights
model.load_state_dict(torch.load(model_weights_path,map_location=torch.device('cpu')))
# Set the model to evaluation mode for inference
model.eval()
# Create a NeuralNetClassifier using the loaded model
cnn = NeuralNetClassifier(
module=model,
max_epochs=0, # Set max_epochs to 0 to avoid additional training
lr=0.002, # You can set this to the learning rate used during training
optimizer=torch.optim.Adam, # You can set the optimizer used during training
device='cpu' # You can specify the device ('cpu' for CPU, 'cuda' for GPU, etc.)
)
stroke_width = st.sidebar.slider("Stroke width: ", 1, 35, 32)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
drawing_mode = st.sidebar.selectbox(
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform", "polygon")
)
realtime_update = st.sidebar.checkbox("Update in realtime", True)
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
background_image=Image.open(bg_image) if bg_image else None,
update_streamlit=realtime_update,
height=300,
drawing_mode=drawing_mode,
display_toolbar=st.sidebar.checkbox("Display toolbar", True),
key="full_app",
)
# Do something interesting with the image data and paths
if canvas_result.image_data is not None:
#st.image(canvas_result.image_data)
image = canvas_result.image_data
image1 = image.copy()
image1 = image1.astype('uint8')
image1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
image1 = cv2.resize(image1,(28,28))
st.image(image1)
image1.resize(1,1,28,28)
st.title(np.argmax(cnn.predict(image1)))
if canvas_result.json_data is not None:
st.dataframe(pd.json_normalize(canvas_result.json_data["objects"])) |