|
from sklearn.datasets import fetch_openml |
|
from sklearn.model_selection import train_test_split |
|
import numpy as np |
|
import streamlit as st |
|
import tensorflow as tf |
|
import numpy as np |
|
import keras |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from PIL import Image |
|
import streamlit as st |
|
from streamlit_drawable_canvas import st_canvas |
|
import cv2 |
|
import torch |
|
from skorch import NeuralNetClassifier |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
mnist = fetch_openml('mnist_784', as_frame=False, cache=False) |
|
X = mnist.data.astype('float32') |
|
y = mnist.target.astype('int64') |
|
X /= 255.0 |
|
|
|
|
|
|
|
XCnn = X.reshape(-1, 1, 28, 28) |
|
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42) |
|
|
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
class Cnn(nn.Module): |
|
def __init__(self, dropout=0.5): |
|
super(Cnn, self).__init__() |
|
self.conv1 = nn.Conv2d(1, 32, kernel_size=3) |
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3) |
|
self.conv2_drop = nn.Dropout2d(p=dropout) |
|
self.fc1 = nn.Linear(1600, 100) |
|
self.fc2 = nn.Linear(100, 10) |
|
self.fc1_drop = nn.Dropout(p=dropout) |
|
|
|
def forward(self, x): |
|
x = torch.relu(F.max_pool2d(self.conv1(x), 2)) |
|
x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) |
|
|
|
|
|
x = x.view(-1, x.size(1) * x.size(2) * x.size(3)) |
|
|
|
x = torch.relu(self.fc1_drop(self.fc1(x))) |
|
x = torch.softmax(self.fc2(x), dim=-1) |
|
return x |
|
torch.manual_seed(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import streamlit as st |
|
import torch |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
|
|
XCnn = X.reshape(-1, 1, 28, 28) |
|
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42) |
|
|
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
class Cnn(nn.Module): |
|
def __init__(self, dropout=0.5): |
|
super(Cnn, self).__init__() |
|
self.conv1 = nn.Conv2d(1, 32, kernel_size=3) |
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3) |
|
self.conv2_drop = nn.Dropout2d(p=dropout) |
|
self.fc1 = nn.Linear(1600, 100) |
|
self.fc2 = nn.Linear(100, 10) |
|
self.fc1_drop = nn.Dropout(p=dropout) |
|
|
|
def forward(self, x): |
|
x = torch.relu(F.max_pool2d(self.conv1(x), 2)) |
|
x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) |
|
|
|
|
|
x = x.view(-1, x.size(1) * x.size(2) * x.size(3)) |
|
|
|
x = torch.relu(self.fc1_drop(self.fc1(x))) |
|
x = torch.softmax(self.fc2(x), dim=-1) |
|
return x |
|
torch.manual_seed(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model=Cnn() |
|
|
|
|
|
model_weights_path = 'model_weights.pth' |
|
|
|
|
|
model.load_state_dict(torch.load(model_weights_path,map_location=torch.device('cpu'))) |
|
|
|
|
|
model.eval() |
|
|
|
cnn = NeuralNetClassifier( |
|
module=model, |
|
max_epochs=0, |
|
lr=0.002, |
|
optimizer=torch.optim.Adam, |
|
device='cpu' |
|
) |
|
|
|
stroke_width = st.sidebar.slider("Stroke width: ", 1, 35, 32) |
|
stroke_color = st.sidebar.color_picker("Stroke color hex: ") |
|
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee") |
|
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"]) |
|
drawing_mode = st.sidebar.selectbox( |
|
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform", "polygon") |
|
) |
|
realtime_update = st.sidebar.checkbox("Update in realtime", True) |
|
|
|
|
|
canvas_result = st_canvas( |
|
fill_color="rgba(255, 165, 0, 0.3)", |
|
stroke_width=stroke_width, |
|
stroke_color=stroke_color, |
|
background_color=bg_color, |
|
background_image=Image.open(bg_image) if bg_image else None, |
|
update_streamlit=realtime_update, |
|
height=300, |
|
drawing_mode=drawing_mode, |
|
display_toolbar=st.sidebar.checkbox("Display toolbar", True), |
|
key="full_app", |
|
) |
|
|
|
|
|
if canvas_result.image_data is not None: |
|
|
|
image = canvas_result.image_data |
|
image1 = image.copy() |
|
image1 = image1.astype('uint8') |
|
image1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) |
|
image1 = cv2.resize(image1,(28,28)) |
|
st.image(image1) |
|
|
|
image1.resize(1,1,28,28) |
|
st.title(np.argmax(cnn.predict(image1))) |
|
if canvas_result.json_data is not None: |
|
st.dataframe(pd.json_normalize(canvas_result.json_data["objects"])) |