Spaces:
Runtime error
Runtime error
File size: 6,633 Bytes
eed5e87 7eb8aa6 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 b292c45 eed5e87 b292c45 eed5e87 b292c45 eed5e87 b292c45 eed5e87 0ff7f24 eed5e87 b292c45 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 51c8ab2 eed5e87 b292c45 eed5e87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from typing import Tuple
import uuid
import random
import os
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from gradio_client import Client, handle_file
from PIL import Image
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MARKDOWN = """
# FLUX.1 Inpainting with Text guided Mask🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = 2048
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width <= maximum_dimension and height <= maximum_dimension:
width = width - (width % 32)
height = height - (height % 32)
return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def evf_sam_mask(image, prompt):
print(image)
images = client.predict(
image_np=handle_file(image),
prompt=prompt,
api_name="/predict")
print(images)
# Open the mask image
pil_image = Image.open(images[1])
print(pil_image)
print(type(pil_image))
return pil_image
@spaces.GPU(duration=150)
def process(
input_image: dict,
input_text: str,
inpaint_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
gr.Info("Please enter a text prompt.")
return None
#image = input_image_editor['background']
#mask = input_image_editor['layers'][0]
print(f"type of image: {type(input_image)}")
mask = evf_sam_mask(input_image, input_text)
print(f"type of mask: {type(mask)}")
print(f"inpaint_text: {inpaint_text}")
print(f"input_text: {input_text}")
if not input_image:
gr.Info("Please upload an image.")
return None
else:
input_image = Image.open(input_image)
if not mask:
gr.Info("Please draw a mask on the image.")
return None
width, height = resize_image_dimensions(original_resolution_wh=input_image.size)
resized_image = input_image.resize((width, height), Image.LANCZOS)
resized_mask = mask.resize((width, height), Image.NEAREST)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
result = pipe(
prompt=inpaint_text,
image=resized_image,
mask_image=resized_mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
print('INFERENCE DONE')
return result, resized_mask
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label='Image',
type='filepath',
sources=["upload", "webcam", "clipboard"],
image_mode='RGB',
)
with gr.Row():
with gr.Column():
input_text_component = gr.Text(
label="Text-guided segmentation",
show_label=True,
max_lines=1,
placeholder="Enter text for generating the segmentation mask",
container=False,
)
inpaint_text_component = gr.Text(
label="Text-guided Inpainting",
show_label=True,
max_lines=1,
placeholder="Enter text to generate Inpainting",
container=False,
)
submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=False)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.75,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image')
with gr.Accordion("Generated Mask", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask')
submit_button_component.click(
fn=process,
inputs=[
input_image, #input_image_editor_component,
input_text_component,
inpaint_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component,
]
)
demo.launch(debug=True)
|