File size: 6,556 Bytes
eed5e87
 
 
7eb8aa6
eed5e87
 
 
 
 
 
 
 
 
 
 
 
 
a463433
 
 
aa440b5
 
eed5e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51c8ab2
eed5e87
 
51c8ab2
 
eed5e87
 
 
 
b292c45
eed5e87
 
 
 
 
 
 
 
 
 
 
 
b292c45
eed5e87
b292c45
eed5e87
 
0ff7f24
 
eed5e87
 
 
 
 
b292c45
 
eed5e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51c8ab2
eed5e87
51c8ab2
 
eed5e87
51c8ab2
eed5e87
 
 
51c8ab2
 
eed5e87
51c8ab2
eed5e87
 
 
51c8ab2
 
eed5e87
51c8ab2
eed5e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b292c45
eed5e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import Tuple
import uuid
import random
import os
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from gradio_client import Client, handle_file

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

MARKDOWN = """
# FLUX.1 Inpainting with Text guided Mask🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for FLUX!
Special thanks to [Piotr Skalski](https://huggingface.co/SkalskiP) and [Gothos](https://github.com/Gothos) 
for their work on enabling and [showcasing inpainting](https://huggingface.co/spaces/SkalskiP/FLUX.1-inpaint) with the FLUX.
<br>We have used Gradio clients to access [EVF-SAM Spaces demo](https://huggingface.co/spaces/wondervictor/evf-sam) for text-guided segmentation. 
Visit [Gradio docs](https://www.gradio.app) to start building! 
"""

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint   
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)

pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)


def resize_image_dimensions(
    original_resolution_wh: Tuple[int, int],
    maximum_dimension: int = 2048
) -> Tuple[int, int]:
    width, height = original_resolution_wh

    if width <= maximum_dimension and height <= maximum_dimension:
        width = width - (width % 32)
        height = height - (height % 32)
        return width, height

    if width > height:
        scaling_factor = maximum_dimension / width
    else:
        scaling_factor = maximum_dimension / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)

    new_width = new_width - (new_width % 32)
    new_height = new_height - (new_height % 32)

    return new_width, new_height


def evf_sam_mask(image, prompt):
    images = client.predict(
      image_np=handle_file(image),
      prompt=prompt, 
      api_name="/predict")
    # Open the mask image
    pil_image = Image.open(images[1])
    return pil_image

@spaces.GPU(duration=150)
def process(
    input_image: dict,
    input_text: str,
    inpaint_text: str,
    seed_slicer: int,
    randomize_seed_checkbox: bool,
    strength_slider: float,
    num_inference_steps_slider: int,
    progress=gr.Progress(track_tqdm=True)
):
    if not input_text:
        gr.Info("Please enter a text prompt.")
        return None

    mask = evf_sam_mask(input_image, input_text)
    
    if not input_image:
        gr.Info("Please upload an image.")
        return None
    else:
        input_image = Image.open(input_image)

    if not mask:
        gr.Info("Please draw a mask on the image.")
        return None

    width, height = resize_image_dimensions(original_resolution_wh=input_image.size)
    resized_image = input_image.resize((width, height), Image.LANCZOS)
    resized_mask = mask.resize((width, height), Image.NEAREST)

    if randomize_seed_checkbox:
        seed_slicer = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed_slicer)
    result = pipe(
        prompt=inpaint_text,
        image=resized_image,
        mask_image=resized_mask,
        width=width,
        height=height,
        strength=strength_slider,
        generator=generator,
        num_inference_steps=num_inference_steps_slider
    ).images[0]
    print('INFERENCE DONE')
    return result, resized_mask


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image( 
                label='Image',
                type='filepath',
                sources=["upload", "webcam", "clipboard"],
                image_mode='RGB',
            )
            with gr.Row():
                with gr.Column():
                    input_text_component = gr.Text(
                        label="Text-guided segmentation",
                        show_label=True,
                        max_lines=1,
                        placeholder="Enter text for generating the segmentation mask",
                        container=False,
                    )
                    inpaint_text_component = gr.Text(
                        label="Text-guided Inpainting",
                        show_label=True,
                        max_lines=1,
                        placeholder="Enter text to generate Inpainting",
                        container=False,
                    )
                submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)

            with gr.Accordion("Advanced Settings", open=False):
                seed_slicer_component = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )

                randomize_seed_checkbox_component = gr.Checkbox(
                    label="Randomize seed", value=False)

                with gr.Row():
                    strength_slider_component = gr.Slider(
                        label="Strength",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.75,
                    )

                    num_inference_steps_slider_component = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20,
                    )
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image')
            with gr.Accordion("Generated Mask", open=False):
                output_mask_component = gr.Image(
                    type='pil', image_mode='RGB', label='Input mask')

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image, #input_image_editor_component,
            input_text_component,
            inpaint_text_component,
            seed_slicer_component,
            randomize_seed_checkbox_component,
            strength_slider_component,
            num_inference_steps_slider_component
        ],
        outputs=[
            output_image_component,
            output_mask_component,
        ]
    )

demo.launch(debug=True)