Pipertts / app.py
Gregniuki's picture
Update app.py
0c3ae0b
raw
history blame
13.9 kB
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---
#@markdown #### Please select your language:
lang_select = "English" #@param ["English", "Spanish"]
if lang_select == "English":
lang = "en"
elif lang_select == "Spanish":
lang = "es"
else:
raise Exception("Language not supported.")
#@markdown ---
use_gpu = False #@param {type:"boolean"}
from fastapi import FastAPI
import json
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime
import glob
import ipywidgets as widgets
from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run
#_LOGGER = logging.getLogger("piper_train.infer_onnx")
import configparser
import os
class Translator:
def __init__(self):
self.configs = {}
def load_language(self, language_name):
if language_name not in self.configs:
config = configparser.ConfigParser()
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
self.configs[language_name] = config
def translate(self, language_name, string):
if language_name == "en":
return string
elif language_name not in self.configs:
self.load_language(language_name)
config = self.configs[language_name]
try:
return config.get("Strings", string)
except (configparser.NoOptionError, configparser.NoSectionError):
if string:
return string
else:
raise Exception("language engine error: This translation is corrupt!")
return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
onnx_models = glob.glob(path + '/*.onnx')
if len(onnx_models) > 1:
return onnx_models
elif len(onnx_models) == 1:
return onnx_models[0]
else:
return None
def main():
"""Main entry point"""
models_path = "/content/piper/src/python"
logging.basicConfig(level=logging.DEBUG)
providers = [
"CPUExecutionProvider"
if use_gpu is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = onnxruntime.SessionOptions()
model = None
onnx_models = detect_onnx_models(models_path)
speaker_selection = widgets.Dropdown(
options=[],
description=f'{lan.translate(lang, "Select speaker")}:',
layout={'visibility': 'hidden'}
)
if onnx_models is None:
if enhanced_accessibility:
playaudio("novoices")
raise Exception(lan.translate(lang, "No downloaded voice packages!"))
elif isinstance(onnx_models, str):
onnx_model = onnx_models
model, config = load_onnx(onnx_model, sess_options, providers)
if config["num_speakers"] > 1:
speaker_selection.options = config["speaker_id_map"].values()
speaker_selection.layout.visibility = 'visible'
preview_sid = 0
if enhanced_accessibility:
playaudio("multispeaker")
else:
speaker_selection.layout.visibility = 'hidden'
preview_sid = None
if enhanced_accessibility:
inferencing(
model,
config,
preview_sid,
lan.translate(
config["espeak"]["voice"][:2],
"Interface openned. Write your texts, configure the different synthesis options or download all the voices you want. Enjoy!"
)
)
else:
voice_model_names = []
for current in onnx_models:
voice_struct = current.split("/")[5]
voice_model_names.append(voice_struct)
if enhanced_accessibility:
playaudio("selectmodel")
selection = widgets.Dropdown(
options=voice_model_names,
description=f'{lan.translate(lang, "Select voice package")}:',
)
load_btn = widgets.Button(
description=lan.translate(lang, "Load it!")
)
config = None
def load_model(button):
nonlocal config
global onnx_model
nonlocal model
nonlocal models_path
selected_voice = selection.value
onnx_model = f"{models_path}/{selected_voice}"
model, config = load_onnx(onnx_model, sess_options, providers)
if enhanced_accessibility:
playaudio("loaded")
if config["num_speakers"] > 1:
speaker_selection.options = config["speaker_id_map"].values()
speaker_selection.layout.visibility = 'visible'
if enhanced_accessibility:
playaudio("multispeaker")
else:
speaker_selection.layout.visibility = 'hidden'
load_btn.on_click(load_model)
display(selection, load_btn)
display(speaker_selection)
speed_slider = widgets.FloatSlider(
value=1,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Rate scale"),
orientation='horizontal',
)
noise_scale_slider = widgets.FloatSlider(
value=0.667,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Phoneme noise scale"),
orientation='horizontal',
)
noise_scale_w_slider = widgets.FloatSlider(
value=1,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Phoneme stressing scale"),
orientation='horizontal',
)
play = widgets.Checkbox(
value=True,
description=lan.translate(lang, "Auto-play"),
disabled=False
)
text_input = widgets.Text(
value='',
placeholder=f'{lan.translate(lang, "Enter your text here")}:',
description=lan.translate(lang, "Text to synthesize"),
layout=widgets.Layout(width='80%')
)
synthesize_button = widgets.Button(
description=lan.translate(lang, "Synthesize"),
button_style='success', # 'success', 'info', 'warning', 'danger' or ''
tooltip=lan.translate(lang, "Click here to synthesize the text."),
icon='check'
)
close_button = widgets.Button(
description=lan.translate(lang, "Exit"),
tooltip=lan.translate(lang, "Closes this GUI."),
icon='check'
)
def on_synthesize_button_clicked(b):
if model is None:
if enhanced_accessibility:
playaudio("nomodel")
raise Exception(lan.translate(lang, "You have not loaded any model from the list!"))
text = text_input.value
if config["num_speakers"] > 1:
sid = speaker_selection.value
else:
sid = None
rate = speed_slider.value
noise_scale = noise_scale_slider.value
noise_scale_w = noise_scale_w_slider.value
auto_play = play.value
inferencing(model, config, sid, text, rate, noise_scale, noise_scale_w, auto_play)
def on_close_button_clicked(b):
clear_output()
if enhanced_accessibility:
playaudio("exit")
synthesize_button.on_click(on_synthesize_button_clicked)
close_button.on_click(on_close_button_clicked)
display(text_input)
display(speed_slider)
display(noise_scale_slider)
display(noise_scale_w_slider)
display(play)
display(synthesize_button)
display(close_button)
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
_LOGGER.debug("Loading model from %s", model)
config = load_config(model)
model = onnxruntime.InferenceSession(
str(model),
sess_options=sess_options,
providers= providers
)
_LOGGER.info("Loaded model from %s", model)
return model, config
def load_config(model):
with open(f"{model}.json", "r") as file:
config = json.load(file)
return config
PAD = "_" # padding (0)
BOS = "^" # beginning of sentence
EOS = "$" # end of sentence
class PhonemeType(str, Enum):
ESPEAK = "espeak"
TEXT = "text"
def phonemize(config, text: str) -> List[List[str]]:
"""Text to phonemes grouped by sentence."""
if config["phoneme_type"] == PhonemeType.ESPEAK:
if config["espeak"]["voice"] == "ar":
# Arabic diacritization
# https://github.com/mush42/libtashkeel/
text = tashkeel_run(text)
return phonemize_espeak(text, config["espeak"]["voice"])
if config["phoneme_type"] == PhonemeType.TEXT:
return phonemize_codepoints(text)
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
"""Phonemes to ids."""
id_map = config["phoneme_id_map"]
ids: List[int] = list(id_map[BOS])
for phoneme in phonemes:
if phoneme not in id_map:
print("Missing phoneme from id map: %s", phoneme)
continue
ids.extend(id_map[phoneme])
ids.extend(id_map[PAD])
ids.extend(id_map[EOS])
return ids
def inferencing(model, config, sid, line, length_scale = 1, noise_scale = 0.667, noise_scale_w = 0.8, auto_play=True):
audios = []
if config["phoneme_type"] == "PhonemeType.ESPEAK":
config["phoneme_type"] = "espeak"
text = phonemize(config, line)
for phonemes in text:
phoneme_ids = phonemes_to_ids(config, phonemes)
num_speakers = config["num_speakers"]
if num_speakers == 1:
speaker_id = None # for now
else:
speaker_id = sid
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[noise_scale, length_scale, noise_scale_w],
dtype=np.float32,
)
sid = None
if speaker_id is not None:
sid = np.array([speaker_id], dtype=np.int64)
audio = model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": sid,
},
)[0].squeeze((0, 1))
audio = audio_float_to_int16(audio.squeeze())
audios.append(audio)
merged_audio = np.concatenate(audios)
sample_rate = config["audio"]["sample_rate"]
display(Markdown(f"{line}"))
display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
# Create an instance of the FastAPI class
app = main()
# Define a route for the root endpoint
@app.get("/")
def read_root():
return {"message": "Hello, World!"}