punctcap / multi_lingual.py
mturan's picture
Add application file
48b5e1d
raw
history blame
11.7 kB
#!/usr/bin/env python
import os
import torch
import string
import onnxruntime as ort
from dataclasses import dataclass
from omegaconf import OmegaConf
from typing import List, Optional, Union, Dict
from sentencepiece import SentencePieceProcessor
from torch.utils.data import Dataset, DataLoader
from typing import Iterator, List, Iterable, Tuple
ACRONYM_TOKEN = "<ACRONYM>"
torch.set_grad_enabled(False)
torch.backends.cudnn.enabled = False
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
@dataclass
class PunctCapConfigONNX:
spe_filename: str = "xlm_roberta_encoding.model"
model_filename: str = "nemo_model.onnx"
config_filename: str = "config.yaml"
directory: Optional[str] = None
class PunctCapModelONNX:
def __init__(self, cfg: PunctCapConfigONNX):
self._spe_path = os.path.join(cfg.directory, cfg.spe_filename)
onnx_path = os.path.join(cfg.directory, cfg.model_filename)
config_path = os.path.join(cfg.directory, cfg.config_filename)
self._tokenizer: SentencePieceProcessor = SentencePieceProcessor(self._spe_path)
self._ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path)
self._config = OmegaConf.load(config_path)
self._max_len = self._config.max_length
self._pre_labels: List[str] = self._config.pre_labels
self._post_labels: List[str] = self._config.post_labels
self._languages: List[str] = self._config.languages
self._null_token = self._config.get("null_token", "<NULL>")
def _setup_dataloader(self, texts: List[str], batch_size_tokens: int, overlap: int) -> DataLoader:
dataset: TextInferenceDataset = TextInferenceDataset(
texts=texts,
batch_size_tokens=batch_size_tokens,
overlap=overlap,
max_length=self._max_len,
spe_model_path=self._spe_path,
)
return DataLoader(
dataset=dataset,
collate_fn=dataset.collate_fn,
batch_sampler=dataset.sampler,
)
def punctuation_removal(self, texts: List[str]) -> List[str]:
punkt = string.punctuation + """`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…–ـ""" + """!?。。"""
punkt = punkt.replace("-", "")
punkt = punkt.replace("'", "")
punkt += "„“"
return [text.translate(str.maketrans("", "", punkt)).lower().strip() for text in texts]
def infer(
self,
texts: List[str],
apply_sbd: bool = False,
batch_size_tokens: int = 4096,
overlap: int = 16,
) -> Union[List[str], List[List[str]]]:
texts = self.punctuation_removal(texts)
collectors: List[PunctCapCollector] = [
PunctCapCollector(sp_model=self._tokenizer, apply_sbd=apply_sbd, overlap=overlap)
for _ in range(len(texts))
]
dataloader: DataLoader = self._setup_dataloader(texts=texts, batch_size_tokens=batch_size_tokens, overlap=overlap)
for batch in dataloader:
input_ids, batch_indices, input_indices, lengths = batch
pre_preds, post_preds, cap_preds, seg_preds = self._ort_session.run(None, {"input_ids": input_ids.numpy()})
batch_size = input_ids.shape[0]
for i in range(batch_size):
length = lengths[i].item()
batch_idx = batch_indices[i].item()
input_idx = input_indices[i].item()
segment_ids = input_ids[i, 1 : length - 1].tolist()
segment_pre_preds = pre_preds[i, 1 : length - 1].tolist()
segment_post_preds = post_preds[i, 1 : length - 1].tolist()
segment_cap_preds = cap_preds[i, 1 : length - 1].tolist()
segment_sbd_preds = seg_preds[i, 1 : length - 1].tolist()
pre_tokens = [self._pre_labels[i] for i in segment_pre_preds]
post_tokens = [self._post_labels[i] for i in segment_post_preds]
pre_tokens = [x if x != self._null_token else None for x in pre_tokens]
post_tokens = [x if x != self._null_token else None for x in post_tokens]
collectors[batch_idx].collect(
ids=segment_ids,
pre_preds=pre_tokens,
post_preds=post_tokens,
cap_preds=segment_cap_preds,
sbd_preds=segment_sbd_preds,
idx=input_idx,
)
outputs: Union[List[str], List[List[str]]] = [x.produce() for x in collectors]
return outputs
@dataclass
class TokenizedSegment:
input_ids: List[int]
batch_idx: int
input_idx: int
def __len__(self) -> int:
return len(self.input_ids)
class TokenBatchSampler(Iterable):
def __init__(self, segments: List[TokenizedSegment], batch_size_tokens: int):
self._batches = self._make_batches(segments, batch_size_tokens)
def _make_batches(self, segments: List[TokenizedSegment], batch_size_tokens: int) -> List[List[int]]:
segments_with_index = [(segment, i) for i, segment in enumerate(segments)]
segments_with_index.sort(key=lambda x: len(x[0]), reverse=True)
batches, current_batch_elements, current_max_len = [], [], 0
for segment, idx in segments_with_index:
potential_max_len = max(current_max_len, len(segment))
if potential_max_len * (len(current_batch_elements) + 1) > batch_size_tokens:
batches.append(current_batch_elements)
current_batch_elements, current_max_len = [], 0
current_batch_elements.append(idx)
current_max_len = potential_max_len
if current_batch_elements:
batches.append(current_batch_elements)
return batches
def __iter__(self) -> Iterator:
yield from self._batches
def __len__(self) -> int:
return len(self._batches)
class TextInferenceDataset(Dataset):
def __init__(
self,
texts: List[str],
spe_model_path: str,
batch_size_tokens: int = 4096,
max_length: int = 512,
overlap: int = 32,
):
self._spe_model = SentencePieceProcessor(spe_model_path)
self._segments = self._tokenize_inputs(texts, max_length, overlap)
self._sampler = TokenBatchSampler(self._segments, batch_size_tokens)
@property
def sampler(self) -> Iterable:
return self._sampler
def _tokenize_inputs(self, texts: List[str], max_len: int, overlap: int) -> List[TokenizedSegment]:
max_len -= 2
segments = []
for batch_idx, text in enumerate(texts):
ids, start, input_idx = self._spe_model.EncodeAsIds(text), 0, 0
while start < len(ids):
adjusted_start = start - overlap if input_idx else 0
segments.append(
TokenizedSegment(
ids[adjusted_start : adjusted_start + max_len],
batch_idx,
input_idx,
)
)
start += max_len - overlap
input_idx += 1
return segments
def __len__(self) -> int:
return len(self._segments)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int, int]:
segment = self._segments[idx]
input_ids = torch.Tensor([self._spe_model.bos_id(), *segment.input_ids, self._spe_model.eos_id()])
return input_ids, segment.batch_idx, segment.input_idx
def collate_fn(self, batch: List[Tuple[torch.Tensor, int, int]]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
input_ids = [x[0] for x in batch]
lengths = torch.tensor([x.shape[0] for x in input_ids])
max_len = lengths.max().item()
batched_ids = torch.full((len(input_ids), max_len), self._spe_model.pad_id())
for idx, ids in enumerate(input_ids):
batched_ids[idx, : lengths[idx]] = ids
return (
batched_ids,
torch.tensor([x[1] for x in batch]),
torch.tensor([x[2] for x in batch]),
lengths,
)
@dataclass
class PCSegment:
ids: List[int]
pre_preds: List[Optional[str]]
post_preds: List[Optional[str]]
cap_preds: List[List[int]]
sbd_preds: List[int]
def __len__(self):
return len(self.ids)
class PunctCapCollector:
def __init__(self, apply_sbd: bool, overlap: int, sp_model: SentencePieceProcessor):
self._segments: Dict[int, PCSegment] = {}
self._apply_sbd = apply_sbd
self._overlap = overlap
self._sp_model = sp_model
def collect(
self,
ids: List[int],
pre_preds: List[Optional[str]],
post_preds: List[Optional[str]],
sbd_preds: List[int],
cap_preds: List[List[int]],
idx: int,
):
self._segments[idx] = PCSegment(
ids=ids,
pre_preds=pre_preds,
post_preds=post_preds,
sbd_preds=sbd_preds,
cap_preds=cap_preds,
)
def produce(self) -> Union[List[str], str]:
ids: List[int] = []
pre_preds: List[Optional[str]] = []
post_preds: List[Optional[str]] = []
cap_preds: List[List[int]] = []
sbd_preds: List[int] = []
for i in range(len(self._segments)):
segment = self._segments[i]
start = 0
stop = len(segment)
if i > 0:
start += self._overlap // 2
if i < len(self._segments) - 1:
stop -= self._overlap // 2
ids.extend(segment.ids[start:stop])
pre_preds.extend(segment.pre_preds[start:stop])
post_preds.extend(segment.post_preds[start:stop])
sbd_preds.extend(segment.sbd_preds[start:stop])
cap_preds.extend(segment.cap_preds[start:stop])
input_tokens = [self._sp_model.IdToPiece(x) for x in ids]
output_texts: List[str] = []
current_chars: List[str] = []
for token_idx, token in enumerate(input_tokens):
if token.startswith("▁") and current_chars:
current_chars.append(" ")
char_start = 1 if token.startswith("▁") else 0
for token_char_idx, char in enumerate(token[char_start:], start=char_start):
if token_char_idx == char_start and pre_preds[token_idx] is not None:
current_chars.append(pre_preds[token_idx])
if cap_preds[token_idx][token_char_idx]:
char = char.upper()
current_chars.append(char)
label = post_preds[token_idx]
if label == ACRONYM_TOKEN:
current_chars.append(".")
elif token_char_idx == len(token) - 1 and post_preds[token_idx] is not None:
current_chars.append(post_preds[token_idx])
if self._apply_sbd and token_char_idx == len(token) - 1 and sbd_preds[token_idx]:
output_texts.append("".join(current_chars))
current_chars = []
if current_chars:
output_texts.append("".join(current_chars))
if not self._apply_sbd:
if len(output_texts) > 1:
raise ValueError(f"Not applying SBD but got more than one result: {output_texts}")
return output_texts[0]
return output_texts
class MultiLingual:
def __init__(self):
cfg = PunctCapConfigONNX(directory="/code/models/multilingual")
self._punctuator = PunctCapModelONNX(cfg)
def punctuate(self, data: str) -> str:
return self._punctuator.infer([data])[0]