Spaces:
Runtime error
Runtime error
File size: 8,222 Bytes
ee55870 459ee04 d9c12fa ee55870 d01da2d de1d7f1 d9c12fa de1d7f1 ee55870 d9c12fa ee55870 d9c12fa 555032a ee55870 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python
# this code modify from https://huggingface.co/spaces/lykeven/visualglm-6b
import gradio as gr
import re
from PIL import Image
import torch
from io import BytesIO
import hashlib
import os
from transformers import LlamaForCausalLM, LlamaTokenizer, BlipImageProcessor, BitsAndBytesConfig, AutoModelForCausalLM
DESCRIPTION = '''# <a href="https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1">Ziya-Blip2-14B</a>'''
MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
MAINTENANCE_NOTICE2 = '提示1: 如果应用报了“Something went wrong, connection error out”的错误,请关闭代理并重试。\n提示2: 如果你上传了很大的图片,比如10MB大小,那将需要一些时间来上传和处理,请耐心等待。'
NOTES = 'This app is adapted from <a href="https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1">https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1</a>. It would be recommended to check out the repo if you want to see the detail of our model. And most of the codes attach to this demo are modify from <a href="https://huggingface.co/spaces/lykeven/visualglm-6b">lykeven/visualglm-6b</a>.'
import json
default_chatbox = []
def is_chinese(text):
zh_pattern = re.compile(u'[\u4e00-\u9fa5]+')
return zh_pattern.search(text)
AUTH_TOKEN = os.getenv("AUTH_TOKEN")
LM_MODEL_PATH = "wuxiaojun/Ziya-LLaMA-13B-v1"
# LM_MODEL_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1"
lm_model = LlamaForCausalLM.from_pretrained(
LM_MODEL_PATH,
device_map="auto",
torch_dtype=torch.float16,
use_auth_token=AUTH_TOKEN,
quantization_config=BitsAndBytesConfig(load_in_4bit=True))
TOKENIZER_PATH = "IDEA-CCNL/Ziya-LLaMA-13B-v1"
# TOKENIZER_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1"
# tokenizer = LlamaTokenizer.from_pretrained(LM_MODEL_PATH, use_auth_token=AUTH_TOKEN)
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
# visual model
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
# demo.py is in the project path, so we can use local path ".". Otherwise you should use "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1"
visual_model_path = "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1"
# visual_model_path = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-BLIP2-14B-Visual-v1"
model = AutoModelForCausalLM.from_pretrained(
visual_model_path,
trust_remote_code=True, use_auth_token=AUTH_TOKEN,
torch_dtype=torch.float16)
model.cuda() # if you use on cpu, comment this line
model.language_model = lm_model
image_size = model.config.vision_config.image_size
image_processor = BlipImageProcessor(
size={"height": image_size, "width": image_size},
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
)
def post(
input_text,
temperature,
top_p,
image_prompt,
result_previous,
hidden_image
):
result_text = [(ele[0], ele[1]) for ele in result_previous]
previous_querys = []
previous_outputs = []
for i in range(len(result_text)-1, -1, -1):
if result_text[i][0] == "":
del result_text[i]
else:
previous_querys.append(result_text[i][0])
previous_outputs.append(result_text[i][1])
is_zh = is_chinese(input_text)
if image_prompt is None:
print("Image empty")
if is_zh:
result_text.append((input_text, '图片为空!请上传图片并重试。'))
else:
result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
return input_text, result_text, hidden_image
elif input_text == "":
print("Text empty")
result_text.append((input_text, 'Text empty! Please enter text and retry.'))
return "", result_text, hidden_image
generate_config = {
"max_new_tokens": 128,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": 1.18,
}
img = Image.open(image_prompt)
pixel_values = image_processor(
img,
return_tensors="pt").pixel_values.to(
model.device).to(model.dtype)
output_buffer = BytesIO()
img.save(output_buffer, "PNG")
byte_data = output_buffer.getvalue()
md = hashlib.md5()
md.update(byte_data)
img_hash = md.hexdigest()
if img_hash != hidden_image:
previous_querys = []
previous_outputs = []
result_text = []
answer = model.chat(
tokenizer=tokenizer,
pixel_values=pixel_values,
query=input_text,
previous_querys=previous_querys,
previous_outputs=previous_outputs,
**generate_config,
)
result_text.append((input_text, answer))
print(result_text)
return "", result_text, img_hash
def clear_fn(value):
return "", default_chatbox, None
def clear_fn2(value):
return default_chatbox
def io_fn(a, b, c):
print(f"call io_fn")
return a, b
def change_language(value):
if value == "Change hint to English":
return "提示变为中文", MAINTENANCE_NOTICE1
else:
return "Change hint to English", MAINTENANCE_NOTICE2
def main():
gr.close_all()
examples = []
with open("./examples/example_inputs.jsonl") as f:
for line in f:
data = json.loads(line)
examples.append(data)
with gr.Blocks(css='style.css') as demo:
with gr.Row():
with gr.Column(scale=4.5):
with gr.Group():
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
with gr.Row():
run_button = gr.Button('Generate')
clear_button = gr.Button('Clear')
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
with gr.Row():
temperature = gr.Slider(maximum=1, value=0.7, minimum=0, label='Temperature')
top_p = gr.Slider(maximum=1, value=0.1, minimum=0, label='Top P')
with gr.Group():
with gr.Row():
with gr.Column(scale=7):
maintenance_notice = gr.Markdown(MAINTENANCE_NOTICE1)
with gr.Column(scale=2):
change_button = gr.Button('Change hint to English', visible=False)
with gr.Column(scale=5.5):
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[]).style(height=550)
hidden_image_hash = gr.Textbox(visible=False)
gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples],
inputs=[input_text, image_prompt],
label="Example Inputs (Click to insert an examplet into the input box)",
examples_per_page=3)
gr.Markdown(NOTES)
print(gr.__version__)
run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash],
outputs=[input_text, result_text, hidden_image_hash])
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash],
outputs=[input_text, result_text, hidden_image_hash])
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
print(gr.__version__)
demo.queue(concurrency_count=10)
demo.launch(server_name="0.0.0.0")
if __name__ == '__main__':
main() |