Spaces:
Build error
Build error
File size: 11,684 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
"""positional_encoding.py """
from typing import Optional, Literal
from inspect import isfunction
from math import log, log2, pi, floor
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from model.RoPE.RoPE import RotaryEmbedding
class AlibiPositionalBias(nn.Module):
"""
Alibi Positional Bias for Transformer Attention
: modified to support trainalbe slope similar to "little bird" paper, based on
https://github.com/lucidrains/x-transformers/
https://github.com/ofirpress/attention_with_linear_biases/issues/5
This is Alibi positional bias extension for:
- bi-directional self/cross attention
- supporting extrapolation.
References:
Ofir, Noah A. Smith, and Mike Lewis. "Train short, test long: Attention with linear
biases enables input length extrapolation." arXiv preprint arXiv:2108.12409 (2021).
Lee, Minchul, Kijong Han, and Myeong Cheol Shin. "LittleBird: Efficient Faster & Longer
Transformer for Question Answering." arXiv preprint arXiv:2210.11870 (2022).
"""
def __init__(self,
heads: int = 8,
total_heads: int = 8,
trainable_slope: bool = False,
trainable_slope_init: Literal['random', 'log'] = 'random',
**kwargs) -> None:
super().__init__()
self.heads = heads # number of heads to be activated
self.total_heads = total_heads # number of heads in attention module
self.trainable_slope = trainable_slope
self.trainable_slope_init = trainable_slope_init
if trainable_slope:
self.slopes = nn.Parameter(torch.Tensor(heads, 1, 1), requires_grad=True)
else:
slopes = torch.Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent=False)
self.register_buffer('bias', None, persistent=False)
def reset_parameters(self) -> None:
if self.trainable_slope:
if self.trainable_slope_init == 'random':
nn.init.normal_(self.slopes, -2, 1)
else:
raise NotImplementedError(f'Unknown trainable_slope_init: {self.trainable_slope_init}')
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device=device)
j_arange = torch.arange(j, device=device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2**floor(log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(
2 * closest_power_of_2)[0::2][:heads - closest_power_of_2]
@staticmethod
def pad_at_dim(t, pad, dim=-1, value=0.):
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value=value)
@property
def device(self):
if self.trainable_slope:
return self.slopes.device
else:
return next(self.buffers()).device
def forward(self, i, j):
"""
Args:
i (int): end index of query
j (int): end index of key
Returns:
torch.Tensor: (num_total_heads, i, j) positional bias for each head
Usage:
>>> alibi_bias = AlibiPositionalBias(heads=8, total_heads=8, trainable_slope=False)
>>> pos_bias = alibi_bias(len(q), len(k))
>>> q_dot_k = ...
>>> q_dot_k += pos_bias
>>> q_dot_k = q_dot_k.softmax(dim=-1)
"""
h, device = self.total_heads, self.device
if self.trainable_slope:
if self.bias is not None and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
bias = self.bias[..., :i, :j]
else:
bias = self.get_bias(i, j, device)
num_heads_unalibied = h - bias.shape[0]
bias = self.pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
self.register_buffer('bias', bias, persistent=False)
return self.bias * torch.sigmoid(self.slopes)
else:
if self.bias is not None and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = self.pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
self.register_buffer('bias', bias, persistent=False)
return self.bias
class FixedSinusoidalPositionalEmbedding(nn.Embedding):
"""
Sinusoidal Absolute Positional Embeddings (APE) of any length.
Adapted from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding
"""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__(num_positions, embedding_dim)
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)
])
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
return out
@torch.no_grad()
def forward(self, seq_len: int, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
positions = torch.arange(past_key_values_length,
past_key_values_length + seq_len,
dtype=torch.long,
device=self.weight.device)
return super().forward(positions)
class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module):
"""Rotary positional embedding
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
"""
def __init__(self, config):
super().__init__()
dim = config.d_model // config.num_heads
base = config.rotary_embedding_base
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.cached_sequence_length = None
self.cached_rotary_positional_embedding = None
def forward(self, hidden_states):
sequence_length = hidden_states.shape[1]
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
return self.cached_rotary_positional_embedding
self.cached_sequence_length = sequence_length
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
embeddings = torch.cat((freqs, freqs), dim=-1)
cos_embeddings = embeddings.cos()[:, None, None, :]
sin_embeddings = embeddings.sin()[:, None, None, :]
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings])
return self.cached_rotary_positional_embedding
class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
"""Relative positional encoding module."""
def __init__(self, config):
super().__init__()
self.max_len = config.num_max_positions
self.d_model = config.d_model
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
def extend_pe(self, x):
# Reset the positional encodings
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` is the position of query vector and `j` is the
# position of key vector. We use positive relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(log(10000.0) / self.d_model))
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reverse the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, hidden_states: torch.Tensor):
self.extend_pe(hidden_states)
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
relative_position_embeddings = self.pe[:, start_idx:end_idx]
return relative_position_embeddings
#================================================================================================
# Rotary Positional Embedding
#================================================================================================
def get_rotary_emb(d_by_head: int,
freqs_for: Literal["l", "lang", "p", "pixel"],
partial_pe: bool = False,
learned_freq: bool = False):
if partial_pe is True:
rdim = d_by_head // 2
else:
rdim = d_by_head
if freqs_for in ["l", "lang"]:
freqs_for = "lang"
elif freqs_for in ["p", "pixel"]:
freqs_for = "pixel"
else:
raise ValueError(f"freqs_for must be 'l' or 'lang' or 'p' or 'pixel', but got {freqs_for}")
return RotaryEmbedding(dim=rdim, freqs_for=freqs_for, learned_freq=learned_freq)
def test_rotary_embedding_lang():
d = 128
num_heads = 8
d_by_head = d // num_heads
rotary = get_rotary_emb(d_by_head, freqs_for="lang", partial_pe=False, learned_freq=False)
q = torch.ones(1, 8, 110, d_by_head)
q = rotary.apply_rotary_custom(q)
import matplotlib.pyplot as plt
plt.imshow(q[0, 0, :, :].detach().numpy().T, origin='lower')
|