Spaces:
Build error
Build error
# Copyright 2024 The YourMT3 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Please see the details in the LICENSE file. | |
# ============================================================================== | |
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
from typing import Optional, Tuple, Union, Dict | |
from einops import rearrange | |
from model.ops import count_parameters | |
import torch | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint | |
from transformers.utils import logging | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5LayerSelfAttention, T5LayerCrossAttention, T5LayerFF) | |
from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions) | |
from transformers import T5Config, T5PreTrainedModel | |
from model.positional_encoding import FixedSinusoidalPositionalEmbedding | |
from model.ff_layer import get_ff_layer | |
logger = logging.get_logger(__name__) | |
class T5BlockYMT3(nn.Module): | |
"""T5 Block, modified to allow using different types of FF layers.""" | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.layer = nn.ModuleList() | |
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | |
if self.is_decoder: | |
self.layer.append(T5LayerCrossAttention(config)) | |
# FF layer | |
if config.ff_layer_type == 't5_gmlp': | |
self.layer.append(T5LayerFF(config)) | |
elif config.ff_layer_type == 'moe': | |
config.moe_num_experts = 8 | |
config.moe_topk = 2 | |
config.hidden_act = 'silu' | |
moe = get_ff_layer(config, input_size=config.d_model, widening_factor=config.ff_widening_factor) | |
self.layer.append(moe) | |
else: | |
raise ValueError(f"Unknown FF layer type: {config.ff_layer_type}.") | |
self.ff_layer_type = config.ff_layer_type | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
): | |
if past_key_value is not None: | |
if not self.is_decoder: | |
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states") | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer - Modified for MoE | |
if self.ff_layer_type == 't5_gmlp': | |
hidden_states = self.layer[-1](hidden_states) | |
elif self.ff_layer_type == 'moe': | |
hidden_states = hidden_states + self.layer[-1](hidden_states)[0] # residual connection outside the MoE | |
else: | |
raise ValueError(f"Unknown FF layer type: {self.ff_layer_type}.") | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
class T5StackYMT3(T5PreTrainedModel): | |
""" | |
T5Stack, modified for YMT3 with: | |
- absolute sinusoidal absolute positional encoding | |
""" | |
def __init__( | |
self, | |
config, | |
): | |
super().__init__(config) | |
self.is_decoder = config.is_decoder | |
# Positional encoding (modified) | |
self.use_t5_trainable_pe = False | |
self.additive_pe = None | |
pos_enc_type = getattr(config, 'position_encoding_type', 'sinusoidal') | |
if pos_enc_type in ['sinusoidal']: | |
self.additive_pe = FixedSinusoidalPositionalEmbedding(config.num_max_positions, | |
embedding_dim=config.d_model) | |
self.block = nn.ModuleList( | |
[T5BlockYMT3(config, has_relative_attention_bias=False) for i in range(config.num_layers)]) | |
elif pos_enc_type == 'trainable': | |
self.use_t5_trainable_pe = True | |
# Stack blocks | |
self.block = nn.ModuleList( | |
[T5BlockYMT3(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]) | |
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
# input_ids=None, | |
inputs_embeds=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = (output_hidden_states | |
if output_hidden_states is not None else self.config.output_hidden_states) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify {err_msg_prefix}inputs_embeds") | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
# mod: required for additive PE | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if use_cache is True: | |
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
encoder_seq_length = encoder_hidden_states.shape[1] | |
encoder_attention_mask = torch.ones(batch_size, | |
encoder_seq_length, | |
device=inputs_embeds.device, | |
dtype=torch.long) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") | |
use_cache = False | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
position_bias = None | |
encoder_decoder_position_bias = None | |
# mod: additive absolute PE (sinusoidal) | |
if self.additive_pe is not None: | |
inputs_embeds = inputs_embeds + self.additive_pe(inputs_embeds.shape[1], past_key_values_length) | |
else: | |
pass # trinable PE is implemented in T5Block | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return tuple(module(*inputs, use_cache, output_attentions)) | |
return custom_forward | |
layer_outputs = checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
extended_attention_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] if v is not None) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class T5EncoderYMT3(T5PreTrainedModel): | |
# _keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"] | |
def __init__(self, encoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): | |
if config is None: | |
config = T5Config() | |
if encoder_config is not None: | |
config = copy.deepcopy(config) | |
config.update(encoder_config) | |
if hasattr(config, "ff_widening_factor"): | |
config.d_ff = int(config.d_model) * int(config.ff_widening_factor) | |
config.is_decoder = False | |
config.use_cache = False | |
config.is_encoder_decoder = False | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.encoder = T5StackYMT3(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
"""temporary fix for torch.compile issue""" | |
def forward(self, **kwargs): | |
if self.training is True: | |
return self._forward_compile(**kwargs) | |
else: | |
return self._forward_no_compile(**kwargs) | |
def _forward_no_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward( | |
self, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Encode | |
encoder_outputs = self.encoder( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return encoder_outputs | |
else: | |
return BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
class T5DecoderYMT3(T5PreTrainedModel): | |
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): | |
if config is None: | |
config = T5Config() | |
if decoder_config is not None: | |
config = copy.deepcopy(config) | |
config.update(decoder_config) | |
if hasattr(config, "ff_widening_factor"): | |
config.d_ff = int(config.d_model) * int(config.ff_widening_factor) | |
config.is_decoder = True | |
config.is_encoder_decoder = False | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.decoder = T5StackYMT3(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
"""temporary fix for torch.compile issue""" | |
def forward(self, **kwargs): | |
if self.training is True: | |
return self._forward_compile(**kwargs) | |
else: | |
return self._forward_no_compile(**kwargs) | |
def _forward_no_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward( | |
self, | |
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if isinstance(encoder_hidden_states, BaseModelOutput): | |
encoder_hidden_states = encoder_hidden_states.last_hidden_state | |
# Decode | |
decoder_outputs = self.decoder( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs | |
else: | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=decoder_outputs[0], | |
past_key_values=decoder_outputs[1], | |
hidden_states=decoder_outputs[2] if len(decoder_outputs) > 2 else None, | |
attentions=decoder_outputs[3] if len(decoder_outputs) > 3 else None, | |
cross_attentions=decoder_outputs[4] if len(decoder_outputs) > 4 else None, | |
) | |
class MultiChannelT5Decoder(T5PreTrainedModel): | |
def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): | |
if config is None: | |
config = T5Config() | |
if decoder_config is not None: | |
config = copy.deepcopy(config) | |
config.update(decoder_config) | |
if hasattr(config, "ff_widening_factor"): | |
config.d_ff = int(config.d_model) * int(config.ff_widening_factor) | |
config.is_decoder = True | |
config.is_encoder_decoder = False | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.decoder = T5StackYMT3(config) | |
# Multi-channel parameters | |
self.num_channels = config.num_channels | |
# Initialize weights and apply final processing | |
self.post_init() | |
"""temporary fix for torch.compile issue""" | |
def forward(self, **kwargs): | |
if self.training is True: | |
return self._forward_compile(**kwargs) | |
else: | |
return self._forward_no_compile(**kwargs) | |
def _forward_no_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward_compile(self, **kwargs): | |
return self._forward(**kwargs) | |
def _forward( | |
self, | |
# input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
""" | |
Args: | |
inputs_embeds: torch.FloatTensor (B, K, T, D), where K is the number of channels | |
encoder_hidden_states: torch.FloatTensor (B, K, T, D), where K is the number of channels | |
Returns: | |
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions | |
last_hidden_state: torch.FloatTensor (B, K, T, D), where K is the number of channels | |
past_key_values: Tuple[Tuple[torch.Tensor]] | |
hidden_states: Tuple[torch.FloatTensor] | |
attentions: Tuple[torch.FloatTensor] | |
cross_attentions: Tuple[torch.FloatTensor] | |
""" | |
if isinstance(encoder_hidden_states, BaseModelOutput): | |
encoder_hidden_states = encoder_hidden_states.last_hidden_state | |
# Reshape input_embeds and encoder_hidden_states | |
b, k, t, d = inputs_embeds.size() | |
inputs_embeds = rearrange(inputs_embeds, 'b k t d -> (b k) t d') | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b k t d -> (b k) t d') | |
# K-channel Decoding | |
decoder_outputs = self.decoder( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
# Reshape decoder_outputs | |
decoder_outputs['last_hidden_state'] = rearrange(decoder_outputs['last_hidden_state'], | |
'(b k) t d -> b k t d', | |
b=b, | |
k=k) | |
if not return_dict: | |
# Collecting values from decoder_outputs in a specific order | |
outputs = ( | |
decoder_outputs['last_hidden_state'], | |
decoder_outputs.get('past_key_values', None), | |
decoder_outputs.get('hidden_states', None), | |
decoder_outputs.get('attentions', None), | |
decoder_outputs.get('cross_attentions', None), | |
) | |
return tuple(v for v in outputs if v is not None) | |
else: | |
return decoder_outputs # ['last_hidden_state']: (B, K, T, D) | |
def test_multi_channel_t5_decoder(): | |
# Test multi-channel decoder | |
config = T5Config() | |
config.num_channels = 4 | |
config.d_model = 32 | |
config.num_layers = 2 | |
config.num_heads = 2 | |
config.num_max_positions = 64 # for positional encoding | |
decoder = MultiChannelT5Decoder(decoder_config=None, config=config) | |
decoder.eval() | |
input_emb = torch.rand(2, 4, 64, 32) # (B, K, T, D) | |
enc_hs = torch.rand(2, 4, 64, 32) # (B, K, T, D) | |
out = decoder(inputs_embeds=input_emb, encoder_hidden_states=enc_hs, return_dict=True) | |
# out['last_hidden_state']: (B, K, T, D) | |
# out['past_key_values']: Tuple[Tuple[torch.Tensor]] | |