retrAIced / pages /Text Classification.py
JavierGon12's picture
Remove unnecessary libraries and clean code a bit
cd03817
import re
from transformers import DonutProcessor, VisionEncoderDecoderModel
import torch
import streamlit as st
from PIL import Image
import PyPDF2
from pypdf.errors import PdfReadError
from pypdf import PdfReader
import pypdfium2 as pdfium
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
model_option = st.selectbox("Select the output of the model:",["Classification","Extract Info"])
if model_option == "Classification":
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
device = "cpu"
model.to(device)
# load document image
if document == None:
st.write("Please upload the document in the box above")
else:
try:
PdfReader(document)
pdf = pdfium.PdfDocument(document)
page = pdf.get_page(0)
pil_image = page.render(scale = 300/72).to_pil()
task_prompt = "<s_rvlcdip>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
st.image(pil_image,"Document uploaded")
st.write(processor.token2json(sequence))
except PdfReadError:
document = Image.open(document)
task_prompt = "<s_rvlcdip>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor(document, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
st.image(document,"Document uploaded")
st.write(processor.token2json(sequence))
elif model_option == "Extract Info":
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
device = "cpu"
model.to(device)
# load document image
if document == None:
st.write("Please upload the document in the box above")
else:
try:
PdfReader(document)
pdf = pdfium.PdfDocument(document)
page = pdf.get_page(0)
pil_image = page.render(scale = 300/72).to_pil()
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
st.image(pil_image,"Document uploaded")
st.write(processor.token2json(sequence))
except PdfReadError:
document = Image.open(document)
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor(document, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
st.image(document,"Document uploaded")
st.write(processor.token2json(sequence))