JennyLi / app.py
Jennnnnny's picture
Update app.py
bfbdee0
raw
history blame
4.5 kB
# -*- coding: utf-8 -*-
'''
saved_models文件夹包含两个文件:
1).在原有bert-base-chinese基础上fine-tune的pytorch_model.bin
2).配置文件config.json,和原有bert-base-chinese的配置文件一样
'''
import sys
sys.path.append(r'./4-5.Bert-seq2seq/')
import torch
import torch.nn.functional as F
import numpy as np
from model import BertForSeq2Seq
from tokenizer import Tokenizer
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_generate(text, model_path, out_max_length=40, top_k=30, top_p=0.0, max_length=512):
device = "cuda" if torch.cuda.is_available() else 'cpu'
model = BertForSeq2Seq.from_pretrained(model_path)
model.to(device)
model.eval()
input_max_length = max_length - out_max_length
input_ids, token_type_ids, token_type_ids_for_mask, labels = Tokenizer.encode(text, max_length=input_max_length)
input_ids = torch.tensor(input_ids, device=device, dtype=torch.long).view(1, -1)
token_type_ids = torch.tensor(token_type_ids, device=device, dtype=torch.long).view(1, -1)
token_type_ids_for_mask = torch.tensor(token_type_ids_for_mask, device=device, dtype=torch.long).view(1, -1)
#print(input_ids, token_type_ids, token_type_ids_for_mask)
output_ids = []
with torch.no_grad():
for step in range(out_max_length):
scores = model(input_ids, token_type_ids, token_type_ids_for_mask)
logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0)
logit_score[Tokenizer.unk_id] = -float('Inf')
# 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率
for id_ in set(output_ids):
logit_score[id_] /= 1.5
filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
if Tokenizer.sep_id == next_token.item():
break
output_ids.append(next_token.item())
input_ids = torch.cat((input_ids, next_token.long().unsqueeze(0)), dim=1)
token_type_ids = torch.cat([token_type_ids, torch.ones((1, 1), device=device, dtype=torch.long)], dim=1)
token_type_ids_for_mask = torch.cat([token_type_ids_for_mask, torch.zeros((1, 1), device=device, dtype=torch.long)], dim=1)
#print(input_ids, token_type_ids, token_type_ids_for_mask)
return Tokenizer.decode(np.array(output_ids))
import gradio as gr
def greet(a):
summary = sample_generate(text=a,model_path='/hy-tmp/4-5.Bert-seq2seq/saved_models',top_k=5,top_p=0.95)
return summary
demo=gr.Interface(fn=greet,inputs="text",outputs="text")
demo.launch(share=True)