|
import math |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
def FeedForward(dim, mult=4): |
|
inner_dim = int(dim * mult) |
|
return nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, inner_dim, bias=False), |
|
nn.GELU(), |
|
nn.Linear(inner_dim, dim, bias=False), |
|
) |
|
|
|
|
|
def reshape_tensor(x, heads): |
|
bs, length, width = x.shape |
|
|
|
x = x.view(bs, length, heads, -1) |
|
|
|
x = x.transpose(1, 2) |
|
|
|
x = x.reshape(bs, heads, length, -1) |
|
return x |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): |
|
super().__init__() |
|
self.scale = dim_head ** -0.5 |
|
self.dim_head = dim_head |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, n1, D) |
|
latent (torch.Tensor): latent features |
|
shape (b, n2, D) |
|
""" |
|
x = self.norm1(x) |
|
latents = self.norm2(latents) |
|
|
|
b, seq_len, _ = latents.shape |
|
|
|
q = self.to_q(latents) |
|
kv_input = torch.cat((x, latents), dim=-2) |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
|
|
q = reshape_tensor(q, self.heads) |
|
k = reshape_tensor(k, self.heads) |
|
v = reshape_tensor(v, self.heads) |
|
|
|
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) |
|
weight = (q * scale) @ (k * scale).transpose(-2, -1) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
out = weight @ v |
|
|
|
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) |
|
|
|
return self.to_out(out) |
|
|
|
|
|
class LocalFacialExtractor(nn.Module): |
|
def __init__( |
|
self, |
|
dim=1024, |
|
depth=10, |
|
dim_head=64, |
|
heads=16, |
|
num_id_token=5, |
|
num_queries=32, |
|
output_dim=2048, |
|
ff_mult=4, |
|
): |
|
""" |
|
Initializes the LocalFacialExtractor class. |
|
|
|
Parameters: |
|
- dim (int): The dimensionality of latent features. |
|
- depth (int): Total number of PerceiverAttention and FeedForward layers. |
|
- dim_head (int): Dimensionality of each attention head. |
|
- heads (int): Number of attention heads. |
|
- num_id_token (int): Number of tokens used for identity features. |
|
- num_queries (int): Number of query tokens for the latent representation. |
|
- output_dim (int): Output dimension after projection. |
|
- ff_mult (int): Multiplier for the feed-forward network hidden dimension. |
|
""" |
|
super().__init__() |
|
|
|
|
|
self.num_id_token = num_id_token |
|
self.dim = dim |
|
self.num_queries = num_queries |
|
assert depth % 5 == 0 |
|
self.depth = depth // 5 |
|
scale = dim ** -0.5 |
|
|
|
|
|
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) |
|
|
|
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) |
|
|
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), |
|
FeedForward(dim=dim, mult=ff_mult), |
|
] |
|
) |
|
) |
|
|
|
|
|
for i in range(5): |
|
setattr( |
|
self, |
|
f'mapping_{i}', |
|
nn.Sequential( |
|
nn.Linear(1024, 1024), |
|
nn.LayerNorm(1024), |
|
nn.LeakyReLU(), |
|
nn.Linear(1024, 1024), |
|
nn.LayerNorm(1024), |
|
nn.LeakyReLU(), |
|
nn.Linear(1024, dim), |
|
), |
|
) |
|
|
|
|
|
self.id_embedding_mapping = nn.Sequential( |
|
nn.Linear(1280, 1024), |
|
nn.LayerNorm(1024), |
|
nn.LeakyReLU(), |
|
nn.Linear(1024, 1024), |
|
nn.LayerNorm(1024), |
|
nn.LeakyReLU(), |
|
nn.Linear(1024, dim * num_id_token), |
|
) |
|
|
|
def forward(self, x, y): |
|
""" |
|
Forward pass for LocalFacialExtractor. |
|
|
|
Parameters: |
|
- x (Tensor): The input identity embedding tensor of shape (batch_size, 1280). |
|
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024). |
|
|
|
Returns: |
|
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). |
|
""" |
|
|
|
|
|
latents = self.latents.repeat(x.size(0), 1, 1) |
|
|
|
|
|
x = self.id_embedding_mapping(x) |
|
x = x.reshape(-1, self.num_id_token, self.dim) |
|
|
|
|
|
latents = torch.cat((latents, x), dim=1) |
|
|
|
|
|
for i in range(5): |
|
vit_feature = getattr(self, f'mapping_{i}')(y[i]) |
|
ctx_feature = torch.cat((x, vit_feature), dim=1) |
|
|
|
|
|
for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]: |
|
latents = attn(ctx_feature, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
|
|
latents = latents[:, :self.num_queries] |
|
|
|
latents = latents @ self.proj_out |
|
return latents |
|
|
|
|
|
class PerceiverCrossAttention(nn.Module): |
|
""" |
|
|
|
Args: |
|
dim (int): Dimension of the input latent and output. Default is 3072. |
|
dim_head (int): Dimension of each attention head. Default is 128. |
|
heads (int): Number of attention heads. Default is 16. |
|
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. |
|
|
|
Attributes: |
|
scale (float): Scaling factor used in dot-product attention for numerical stability. |
|
norm1 (nn.LayerNorm): Layer normalization applied to the input image features. |
|
norm2 (nn.LayerNorm): Layer normalization applied to the latent features. |
|
to_q (nn.Linear): Linear layer for projecting the latent features into queries. |
|
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. |
|
to_out (nn.Linear): Linear layer for outputting the final result after attention. |
|
|
|
""" |
|
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): |
|
super().__init__() |
|
self.scale = dim_head ** -0.5 |
|
self.dim_head = dim_head |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
|
|
Args: |
|
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: |
|
- batch_size (b): Number of samples in the batch. |
|
- n1: Sequence length (e.g., number of patches or tokens). |
|
- D: Feature dimension. |
|
|
|
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: |
|
- n2: Number of latent elements. |
|
|
|
Returns: |
|
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). |
|
|
|
""" |
|
|
|
x = self.norm1(x) |
|
latents = self.norm2(latents) |
|
|
|
b, seq_len, _ = latents.shape |
|
|
|
|
|
q = self.to_q(latents) |
|
k, v = self.to_kv(x).chunk(2, dim=-1) |
|
|
|
|
|
q = reshape_tensor(q, self.heads) |
|
k = reshape_tensor(k, self.heads) |
|
v = reshape_tensor(v, self.heads) |
|
|
|
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) |
|
weight = (q * scale) @ (k * scale).transpose(-2, -1) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
|
|
|
|
out = weight @ v |
|
|
|
|
|
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) |
|
|
|
return self.to_out(out) |