|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import AutoModel, BitImageProcessor, SiglipImageProcessor, SiglipVisionModel |
|
from PIL import Image, ImageOps |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import torch.nn as nn |
|
|
|
device = torch.device('cpu') |
|
torch.set_num_threads(4) |
|
|
|
processor_d = BitImageProcessor(do_center_crop=False, do_convert_rgb=False, do_normalize=True, do_rescale=True, do_resize=False, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resample=3, rescale_factor=0.00392156862745098) |
|
model_d = AutoModel.from_pretrained('facebook/dinov2-base', attn_implementation="sdpa").to(device) |
|
processor_s = SiglipImageProcessor.from_pretrained('google/siglip-so400m-patch14-384') |
|
model_s = SiglipVisionModel.from_pretrained('google/siglip-so400m-patch14-384', attn_implementation="sdpa").to(device) |
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, input_size): |
|
super(ResidualBlock, self).__init__() |
|
self.linear1 = nn.Linear(input_size, input_size // 2) |
|
self.LayerNorm1 = nn.LayerNorm(input_size // 2) |
|
self.activation1 = nn.Mish() |
|
|
|
self.linear2 = nn.Linear(input_size // 2, input_size // 4) |
|
self.LayerNorm2 = nn.LayerNorm(input_size // 4) |
|
self.activation2 = nn.Mish() |
|
|
|
self.linear3 = nn.Linear(input_size // 4, input_size // 2) |
|
self.LayerNorm3 = nn.LayerNorm(input_size // 2) |
|
self.activation3 = nn.Mish() |
|
|
|
self.linear4 = nn.Linear(input_size // 2, input_size) |
|
self.LayerNorm4 = nn.LayerNorm(input_size) |
|
self.activation4 = nn.Mish() |
|
|
|
self.shortcut = nn.Linear(input_size, input_size) |
|
|
|
def forward(self, x): |
|
identity = self.shortcut(x) |
|
out = self.linear1(x) |
|
out = self.LayerNorm1(out) |
|
out = self.activation1(out) |
|
|
|
out = self.linear2(out) |
|
out = self.LayerNorm2(out) |
|
out = self.activation2(out) |
|
|
|
out = self.linear3(out) |
|
out = self.LayerNorm3(out) |
|
out = self.activation3(out) |
|
|
|
out = self.linear4(out) |
|
out = self.LayerNorm4(out) |
|
out = self.activation4(out) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_size, xcol='emb', ycol='avg_rating'): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.xcol = xcol |
|
self.ycol = ycol |
|
self.layers = nn.Sequential( |
|
ResidualBlock(self.input_size), |
|
nn.Mish(), |
|
nn.Linear(1920, 1) |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
mlp = MLP(1920) |
|
|
|
s = torch.load("./aesthetic_predictor_huber_ad_ep7.pth", map_location=torch.device('cpu')) |
|
|
|
mlp.load_state_dict(s) |
|
|
|
mlp.to(device) |
|
|
|
mlp.eval() |
|
|
|
def normalized(a, axis=-1, order=2): |
|
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) |
|
l2[l2 == 0] = 1 |
|
return a / np.expand_dims(l2, axis) |
|
|
|
def process_image(image, device): |
|
image = image.convert('RGBA') |
|
background = Image.new('RGBA', image.size, (255, 255, 255, 255)) |
|
image = Image.alpha_composite(background, image).convert('RGB') |
|
|
|
max_side = 518 |
|
ratio = max_side / max(image.size) |
|
new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio)) |
|
image_d = image.resize(new_size, Image.LANCZOS) |
|
max_side_s = 384 |
|
ratio_s = max_side_s / max(image.size) |
|
new_size_s = (int(image.size[0] * ratio_s), int(image.size[1] * ratio_s)) |
|
image_resized = image.resize(new_size_s, Image.LANCZOS) |
|
|
|
image_s = ImageOps.pad(image_resized, (384, 384), color=(255, 255, 255)) |
|
|
|
inputs_d = processor_d(image_d, return_tensors="pt").to(device) |
|
inputs_s = processor_s(image_s, return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
outputs_d = model_d(**inputs_d) |
|
outputs_s = model_s(**inputs_s) |
|
class_token_d = normalized(outputs_d.pooler_output.cpu().detach().numpy()) |
|
class_token_s = normalized(outputs_s.pooler_output.cpu().detach().numpy()) |
|
im_emb_arr = np.concatenate((class_token_s, class_token_d), axis=1) |
|
|
|
prediction_value = mlp(torch.from_numpy(im_emb_arr).to(device).type(torch.FloatTensor)).item() |
|
|
|
return im_emb_arr, prediction_value |
|
|
|
|
|
def infer(image1, image2): |
|
try: |
|
|
|
features1, prediction_value1 = process_image(image1, device) |
|
features2, prediction_value2 = process_image(image2, device) |
|
|
|
cos_sim_features = cosine_similarity(features1, features2)[0][0] |
|
|
|
return cos_sim_features, prediction_value1, prediction_value2 |
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
return "Error", "Error", "Error" |
|
|
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown("# Anime Aesthetic Predictor Based on Twitter User Preferences\nUpload two images to calculate the aesthetic score (0-10).") |
|
with gr.Row(): |
|
image1 = gr.Image(type="pil") |
|
image2 = gr.Image(type="pil") |
|
with gr.Row(): |
|
prediction1 = gr.Textbox(label="Aesthetic Score 1") |
|
prediction2 = gr.Textbox(label="Aesthetic Score 2") |
|
with gr.Row(): |
|
feature_similarity = gr.Textbox(label="Feature Similarity") |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
|
|
submit_btn.click(infer, inputs=[image1, image2], outputs=[feature_similarity, prediction1, prediction2]) |
|
|
|
iface.queue(max_size=10) |
|
iface.launch() |