Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import defaultdict | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.logging import get_logger | |
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer, ProcessorMixin | |
from ...hparams import DataArguments | |
from ..template import Template | |
logger = get_logger(__name__) | |
def _encode_supervised_example( | |
prompt: Sequence[Dict[str, str]], | |
response: Sequence[Dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Tuple[List[int], List[int]]: | |
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
messages = prompt + response | |
input_ids, labels = [], [] | |
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
input_ids += [image_token_id] * getattr(processor, "image_seq_length") | |
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length") | |
encoded_pairs = template.encode_multiturn( | |
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len | |
) | |
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): | |
if data_args.train_on_prompt: | |
source_mask = source_ids | |
elif turn_idx != 0 and template.efficient_eos: | |
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) | |
else: | |
source_mask = [IGNORE_INDEX] * len(source_ids) | |
input_ids += source_ids + target_ids | |
labels += source_mask + target_ids | |
if template.efficient_eos: | |
input_ids += [tokenizer.eos_token_id] | |
labels += [tokenizer.eos_token_id] | |
return input_ids, labels | |
def preprocess_supervised_dataset( | |
examples: Dict[str, List[Any]], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>` | |
# for multiturn examples, we only mask the prompt part in each prompt-response pair. | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
if processor is not None: | |
model_inputs["pixel_values"] = [] | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"] = [] | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
continue | |
input_ids, labels = _encode_supervised_example( | |
prompt=examples["prompt"][i], | |
response=examples["response"][i], | |
system=examples["system"][i], | |
tools=examples["tools"][i], | |
template=template, | |
tokenizer=tokenizer, | |
processor=processor, | |
data_args=data_args, | |
) | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
if processor is not None: | |
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) | |
return model_inputs | |
def preprocess_packed_supervised_dataset( | |
examples: Dict[str, List[Any]], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>` | |
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>` | |
valid_num = 0 | |
batch_input_ids, batch_labels = [], [] | |
lengths = [] | |
length2indexes = defaultdict(list) | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
continue | |
input_ids, labels = _encode_supervised_example( | |
prompt=examples["prompt"][i], | |
response=examples["response"][i], | |
system=examples["system"][i], | |
tools=examples["tools"][i], | |
template=template, | |
tokenizer=tokenizer, | |
processor=None, | |
data_args=data_args, | |
) | |
length = len(input_ids) | |
if length > data_args.cutoff_len: | |
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) | |
else: | |
lengths.append(length) | |
length2indexes[length].append(valid_num) | |
batch_input_ids.append(input_ids) | |
batch_labels.append(labels) | |
valid_num += 1 | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len) | |
for knapsack in knapsacks: | |
packed_input_ids, packed_labels = [], [] | |
for length in knapsack: | |
index = length2indexes[length].pop() | |
packed_input_ids += batch_input_ids[index] | |
packed_labels += batch_labels[index] | |
if len(packed_input_ids) < data_args.cutoff_len: | |
pad_length = data_args.cutoff_len - len(packed_input_ids) | |
packed_input_ids += [tokenizer.pad_token_id] * pad_length | |
packed_labels += [IGNORE_INDEX] * pad_length | |
if len(packed_input_ids) != data_args.cutoff_len: | |
raise ValueError("The length of packed example should be identical to the cutoff length.") | |
model_inputs["input_ids"].append(packed_input_ids) | |
model_inputs["attention_mask"].append([1] * data_args.cutoff_len) | |
model_inputs["labels"].append(packed_labels) | |
return model_inputs | |
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
print("label_ids:\n{}".format(example["labels"])) | |
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False))) | |