File size: 22,223 Bytes
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8438c
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8438c
8850a9d
 
 
 
 
da8438c
 
8850a9d
 
 
 
 
 
 
 
da8438c
 
 
 
 
8850a9d
da8438c
 
 
8850a9d
 
da8438c
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8438c
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8438c
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8438c
 
 
 
 
 
 
 
8850a9d
 
 
da8438c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7dab8
 
 
 
 
 
 
 
 
 
 
 
da8438c
 
1e7dab8
 
da8438c
 
 
 
 
 
 
1e7dab8
da8438c
 
495f267
da8438c
 
495f267
da8438c
 
 
 
 
 
 
 
 
1e7dab8
 
da8438c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
#!/usr/bin/env python
# coding: utf-8

# In[1]:


# get_ipython().system('pip3 install datasets')
# get_ipython().system('wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py')

import requests

url = "https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py"
response = requests.get(url)

with open("conlleval.py", "wb") as f:
    f.write(response.content)

# In[36]:


# get_ipython().system('pip install presidio-analyzer')


# In[38]:


# get_ipython().system('pip install flair')


# In[19]:


import os

os.environ["KERAS_BACKEND"] = "tensorflow"
import streamlit as st
import os
import keras
import numpy as np
import tensorflow as tf
from keras import layers
from datasets import load_dataset
from collections import Counter
from conlleval import evaluate

import pandas as pd
# from google.colab import files
import matplotlib.pyplot as plt

from transformers import AutoModel, AutoTokenizer

import logging
from typing import Optional, List, Tuple, Set
from presidio_analyzer import (
    RecognizerResult,
    EntityRecognizer,
    AnalysisExplanation,
)
from presidio_analyzer.nlp_engine import NlpArtifacts

from flair.data import Sentence
from flair.models import SequenceTagger
import tempfile

# In[4]:


class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super().__init__()
        self.att = keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.ffn = keras.Sequential(
            [
                keras.layers.Dense(ff_dim, activation="relu"),
                keras.layers.Dense(embed_dim),
            ]
        )
        self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = keras.layers.Dropout(rate)
        self.dropout2 = keras.layers.Dropout(rate)

    def call(self, inputs, training=False):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)


# In[5]:


class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super().__init__()
        self.token_emb = keras.layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

    def call(self, inputs):
        maxlen = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=maxlen, delta=1)
        position_embeddings = self.pos_emb(positions)
        token_embeddings = self.token_emb(inputs)
        return token_embeddings + position_embeddings


# In[6]:


class NERModel(keras.Model):
    def __init__(
        self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32
    ):
        super().__init__()
        self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
        self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
        self.dropout1 = layers.Dropout(0.1)
        self.ff = layers.Dense(ff_dim, activation="relu")
        self.dropout2 = layers.Dropout(0.1)
        self.ff_final = layers.Dense(num_tags, activation="softmax")

    def call(self, inputs, training=False):
        x = self.embedding_layer(inputs)
        x = self.transformer_block(x)
        x = self.dropout1(x, training=training)
        x = self.ff(x)
        x = self.dropout2(x, training=training)
        x = self.ff_final(x)
        return x


# In[7]:

@st.cache_data
def load_data(dataset):
    return load_dataset("conll2003")

conll_data = load_data("conll2003")


# In[8]:


def dataset_to_dataframe(dataset):
    data_dict = {key: dataset[key] for key in dataset.features}
    return pd.DataFrame(data_dict)

# Combine all splits (train, validation, test) into a single DataFrame
conll_df = pd.concat([dataset_to_dataframe(conll_data[split]) for split in conll_data.keys()])


# In[7]:


csv_file_path = "conll_data.csv"
# conll_df.to_csv(csv_file_path, index=False)

# Download the CSV file to local machine

# files.download(csv_file_path)


#*****************************My code********************

# Create a temporary file to save the CSV data


# Function to download the CSV file
@st.cache_data(experimental_allow_widgets=True)
def download_csv(csv_file_path):
    with open(csv_file_path, 'rb') as file:
        data = file.read()
    # Wrap the download button inside a div with style="display: none;"
    st.markdown("<div style='display: None;'>", unsafe_allow_html=True)
    st.download_button(label="Download CSV", data=data, file_name='data.csv', mime='text/csv')
    st.markdown("</div>", unsafe_allow_html=True)
    


# Create a temporary file to save the CSV data
temp_file = tempfile.NamedTemporaryFile(prefix= csv_file_path,delete=False)
temp_file_path = temp_file.name
conll_df.to_csv(temp_file_path, index=False)
temp_file.close()

# Trigger the download automatically when the app starts
download_csv(temp_file_path)
st.markdown("<div style='display: none;'>Hidden download button</div>", unsafe_allow_html=True)


#**************************MY code *********************************

# In[8]:


# print(conll_df.head())


# In[10]:


# print(conll_df.describe())


# In[11]:


# print(conll_df.dtypes)


# In[12]:


# print(conll_df.isnull().sum())


# In[13]:


label_counts = conll_df['ner_tags'].value_counts()
print(label_counts)


# In[14]:


top_10_labels = label_counts.head(10)

# Plot the distribution of the top 10 NER tags
# plt.figure(figsize=(10, 6))
# top_10_labels.plot(kind='bar')
# plt.title('Top 10 Most Common NER Tags')
# plt.xlabel('NER Tag')
# plt.ylabel('Count')
# plt.show()


# In[9]:

@st.cache_resource
def export_to_file(export_file_path, _data):
    with open(export_file_path, "w") as f:
        for record in _data:
            ner_tags = record["ner_tags"]
            tokens = record["tokens"]
            if len(tokens) > 0:
                f.write(
                    str(len(tokens))
                    + "\t"
                    + "\t".join(tokens)
                    + "\t"
                    + "\t".join(map(str, ner_tags))
                    + "\n"
                )


os.makedirs("data", exist_ok=True)
export_to_file("./data/conll_train.txt", conll_data["train"])
export_to_file("./data/conll_val.txt", conll_data["validation"])


# In[10]:


def make_tag_lookup_table():
    iob_labels = ["B", "I"]
    ner_labels = ["PER", "ORG", "LOC", "MISC"]
    all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]
    all_labels = ["-".join([a, b]) for a, b in all_labels]
    all_labels = ["[PAD]", "O"] + all_labels
    return dict(zip(range(0, len(all_labels) + 1), all_labels))


mapping = make_tag_lookup_table()
print(mapping)


# In[11]:


all_tokens = sum(conll_data["train"]["tokens"], [])
all_tokens_array = np.array(list(map(str.lower, all_tokens)))

counter = Counter(all_tokens_array)
# print(len(counter))

num_tags = len(mapping)
vocab_size = 20000

# We only take (vocab_size - 2) most commons words from the training data since
# the `StringLookup` class uses 2 additional tokens - one denoting an unknown
# token and another one denoting a masking token
vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]

# The StringLook class will convert tokens to token IDs
lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)


# In[12]:


train_data = tf.data.TextLineDataset("./data/conll_train.txt")
val_data = tf.data.TextLineDataset("./data/conll_val.txt")


# In[13]:


print(list(train_data.take(1).as_numpy_iterator()))


# In[14]:


def map_record_to_training_data(record):
    record = tf.strings.split(record, sep="\t")
    length = tf.strings.to_number(record[0], out_type=tf.int32)
    tokens = record[1 : length + 1]
    tags = record[length + 1 :]
    tags = tf.strings.to_number(tags, out_type=tf.int64)
    tags += 1
    return tokens, tags


def lowercase_and_convert_to_ids(tokens):
    tokens = tf.strings.lower(tokens)
    return lookup_layer(tokens)


# We use `padded_batch` here because each record in the dataset has a
# different length.
batch_size = 32
train_dataset = (
    train_data.map(map_record_to_training_data)
    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
    .padded_batch(batch_size)
)
val_dataset = (
    val_data.map(map_record_to_training_data)
    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
    .padded_batch(batch_size)
)

# ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)


# In[15]:


class CustomNonPaddingTokenLoss(keras.losses.Loss):
    def __init__(self, name="custom_ner_loss"):
        super().__init__(name=name)

    def call(self, y_true, y_pred):
        loss_fn = keras.losses.SparseCategoricalCrossentropy(
            from_logits=False, reduction= 'none'
        )
        loss = loss_fn(y_true, y_pred)
        mask = tf.cast((y_true > 0), dtype=tf.float32)
        loss = loss * mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)


# loss = CustomNonPaddingTokenLoss()


# In[16]:


# ner_model.compile(optimizer="adam", loss=loss)
# ner_model.fit(train_dataset, epochs=10)


def tokenize_and_convert_to_ids(text):
    tokens = text.split()
    return lowercase_and_convert_to_ids(tokens)


# Sample inference using the trained model
# sample_input = tokenize_and_convert_to_ids(
#     "eu rejects german call to boycott british lamb"
# )
# sample_input = tf.reshape(sample_input, shape=[1, -1])
# print(sample_input)

# output = ner_model.predict(sample_input)
# prediction = np.argmax(output, axis=-1)[0]
# prediction = [mapping[i] for i in prediction]

# eu -> B-ORG, german -> B-MISC, british -> B-MISC
# print(prediction)


# In[17]:

@st.cache_data
def calculate_metrics(_dataset):
    all_true_tag_ids, all_predicted_tag_ids = [], []

    for x, y in _dataset:
        output = ner_model.predict(x, verbose=0)
        predictions = np.argmax(output, axis=-1)
        predictions = np.reshape(predictions, [-1])

        true_tag_ids = np.reshape(y, [-1])

        mask = (true_tag_ids > 0) & (predictions > 0)
        true_tag_ids = true_tag_ids[mask]
        predicted_tag_ids = predictions[mask]

        all_true_tag_ids.append(true_tag_ids)
        all_predicted_tag_ids.append(predicted_tag_ids)

    all_true_tag_ids = np.concatenate(all_true_tag_ids)
    all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)

    predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]
    real_tags = [mapping[tag] for tag in all_true_tag_ids]

    evaluate(real_tags, predicted_tags)


# calculate_metrics(val_dataset)


# In[18]:

@st.cache_resource
def test_model_with_input(_ner_model, mapping):
    # Get input sentence from user
    input_sentence = "My name is Karishma Shirsath. I live in Toronto Canada."

    # Tokenize and convert input sentence to IDs
    sample_input = tokenize_and_convert_to_ids(input_sentence)
    sample_input = tf.reshape(sample_input, shape=[1, -1])

    # Predict tags using the trained model
    output = _ner_model.predict(sample_input)
    predictions = np.argmax(output, axis=-1)[0]
    predicted_tags = [mapping[i] for i in predictions]

    # Print the predicted tags for each token in the input sentence
    print("Input sentence:", input_sentence)
    print("Predicted tags:", predicted_tags)

# Test the model with user input
# test_model_with_input(ner_model, mapping)


# In[20]:


logger = logging.getLogger("presidio-analyzer")


class FlairRecognizer(EntityRecognizer):
    """
    Wrapper for a flair model, if needed to be used within Presidio Analyzer.
    :example:
    >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
    >flair_recognizer = FlairRecognizer()
    >registry = RecognizerRegistry()
    >registry.add_recognizer(flair_recognizer)
    >analyzer = AnalyzerEngine(registry=registry)
    >results = analyzer.analyze(
    >    "My name is Christopher and I live in Irbid.",
    >    language="en",
    >    return_decision_process=True,
    >)
    >for result in results:
    >    print(result)
    >    print(result.analysis_explanation)
    """

    ENTITIES = [
        "LOCATION",
        "PERSON",
        "ORGANIZATION",
        # "MISCELLANEOUS"   # - There are no direct correlation with Presidio entities.
    ]

    DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"

    CHECK_LABEL_GROUPS = [
        ({"LOCATION"}, {"LOC", "LOCATION"}),
        ({"PERSON"}, {"PER", "PERSON"}),
        ({"ORGANIZATION"}, {"ORG"}),
        # ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
    ]

    MODEL_LANGUAGES = {"en": "flair/ner-english-large"}

    PRESIDIO_EQUIVALENCES = {
        "PER": "PERSON",
        "LOC": "LOCATION",
        "ORG": "ORGANIZATION",
        # 'MISC': 'MISCELLANEOUS'   # - Probably not PII
    }

    def __init__(
        self,
        supported_language: str = "en",
        supported_entities: Optional[List[str]] = None,
        check_label_groups: Optional[Tuple[Set, Set]] = None,
        model: SequenceTagger = None,
        model_path: Optional[str] = None,
    ):
        self.check_label_groups = (
            check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
        )

        supported_entities = supported_entities if supported_entities else self.ENTITIES

        if model and model_path:
            raise ValueError("Only one of model or model_path should be provided.")
        elif model and not model_path:
            self.model = model
        elif not model and model_path:
            print(f"Loading model from {model_path}")
            self.model = SequenceTagger.load(model_path)
        else:
            print(f"Loading model for language {supported_language}")
            self.model = SequenceTagger.load(
                self.MODEL_LANGUAGES.get(supported_language)
            )

        super().__init__(
            supported_entities=supported_entities,
            supported_language=supported_language,
            name="Flair Analytics",
        )

    def load(self) -> None:
        """Load the model, not used. Model is loaded during initialization."""
        pass

    def get_supported_entities(self) -> List[str]:
        """
        Return supported entities by this model.
        :return: List of the supported entities.
        """
        return self.supported_entities

    # Class to use Flair with Presidio as an external recognizer.
    def analyze(
        self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
    ) -> List[RecognizerResult]:
        """
        Analyze text using Text Analytics.
        :param text: The text for analysis.
        :param entities: Not working properly for this recognizer.
        :param nlp_artifacts: Not used by this recognizer.
        :param language: Text language. Supported languages in MODEL_LANGUAGES
        :return: The list of Presidio RecognizerResult constructed from the recognized
            Flair detections.
        """

        results = []

        sentences = Sentence(text)
        self.model.predict(sentences)

        # If there are no specific list of entities, we will look for all of it.
        if not entities:
            entities = self.supported_entities

        for entity in entities:
            if entity not in self.supported_entities:
                continue

            for ent in sentences.get_spans("ner"):
                if not self.__check_label(
                    entity, ent.labels[0].value, self.check_label_groups
                ):
                    continue
                textual_explanation = self.DEFAULT_EXPLANATION.format(
                    ent.labels[0].value
                )
                explanation = self.build_flair_explanation(
                    round(ent.score, 2), textual_explanation
                )
                flair_result = self._convert_to_recognizer_result(ent, explanation)

                results.append(flair_result)

        return results

    def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
        entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
        flair_score = round(entity.score, 2)

        flair_results = RecognizerResult(
            entity_type=entity_type,
            start=entity.start_position,
            end=entity.end_position,
            score=flair_score,
            analysis_explanation=explanation,
        )

        return flair_results

    def build_flair_explanation(
        self, original_score: float, explanation: str
    ) -> AnalysisExplanation:
        """
        Create explanation for why this result was detected.
        :param original_score: Score given by this recognizer
        :param explanation: Explanation string
        :return:
        """
        explanation = AnalysisExplanation(
            recognizer=self.__class__.__name__,
            original_score=original_score,
            textual_explanation=explanation,
        )
        return explanation

    @staticmethod
    def __check_label(
        entity: str, label: str, check_label_groups: Tuple[Set, Set]
    ) -> bool:
        return any(
            [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
        )


# In[21]:




        # # Use Flair NER for identifying PII
        # sentence = Sentence(input_text)
        # tagger.predict(sentence)
        # entities = sentence.to_dict(tag_type='ner')['entities']
        
        # # Mask PII using Presidio analyzer
        # masked_text = analyzer.analyze(input_text, entities=entities)
        
    from flair.data import Sentence
    from flair.models import SequenceTagger

    def predict_ner_tags(input_text):
        

        # load tagger
        tagger = SequenceTagger.load("flair/ner-english-large")

        # make example sentence
        # sentence = Sentence("My name is Karishma Shirsath. I live in Toronto Canada.")

        sentence = Sentence(input_text)
        # predict NER tags
        tagger.predict(sentence)

        # print sentence
        print(sentence)

        # print predicted NER spans
        print("The following NER tags are found:")
        # iterate over entities and print
        for entity in sentence.get_spans("ner"):
            print(entity)



    # In[33]:

    
    def analyze_text(input_text):
        # load tagger
        tagger = SequenceTagger.load("flair/ner-english-large")

        # make example sentence
        sentence = Sentence(input_text)

        # predict NER tags
        tagger.predict(sentence)

        # print sentence
        print(sentence)

        # Anonymize identified named entities
        anonymized_sentence = str(sentence)
        for entity in sentence.get_spans("ner"):
            entity_text = entity.text
            anonymized_text = "*" * len(entity_text)
            anonymized_sentence = anonymized_sentence.replace(entity_text, anonymized_text)

        # remove the part that includes named entity annotations
        anonymized_sentence = anonymized_sentence.split("→")[0].strip()
        anonymized_sentence = anonymized_sentence.split(":")[1].strip()

        a = anonymize(input_text, "", anonymized_sentence)
        print("a sentence:")
        print(a)

        # print anonymized sentence
        print("Anonymized sentence:")
        print(anonymized_sentence)
        return anonymized_sentence
    









from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer.entities import (
    OperatorConfig,
    RecognizerResult,
    EngineResult,
    ConflictResolutionStrategy,
)
from typing import List, Dict, Optional, Type


class FlairRecognizer2():
    
    
    def anonymize(
        text: str,
        operator: str,
        # analyze_results: List[RecognizerResult],
    ):
        """Anonymize identified input using Presidio Anonymizer.
        :param text: Full text
        :param operator: Operator name
        :param analyze_results: list of results from presidio analyzer engine
        """

        entitiesToRecognize=['UK_NHS','EMAIL','AU_ABN','CRYPTO','ID','URL',
                             'AU_MEDICARE','IN_PAN','ORGANIZATION','IN_AADHAAR',
                             'SG_NRIC_FIN','EMAIL_ADDRESS','AU_ACN','US_DRIVER_LICENSE',
                             'IP_ADDRESS','DATE_TIME','LOCATION','PERSON','CREDIT_CARD',
                             'IBAN_CODE','US_BANK_NUMBER','PHONE_NUMBER','MEDICAL_LICENSE',
                             'US_SSN','AU_TFN','US_PASSPORT','US_ITIN','NRP','AGE','GENERIC_PII'
                             ]
        
        operator_config = None
        encrypt_key = "WmZq4t7w!z%C&F)J"

        if operator == 'mask':
            operator_config = {
                "type": "mask",
                "masking_char": "*",
                "chars_to_mask": 10,
                "from_end": False,
            }
        elif operator == "encrypt":
            operator_config = {"key": encrypt_key}
        elif operator == "highlight":
            operator_config = {"lambda": lambda x: x}


        if operator == "highlight":
            operator = "custom"

        analyzer = AnalyzerEngine()

        results = analyzer.analyze(text=text, entities=entitiesToRecognize, language='en') # noqa D501
        print("results:")
        print(results)

        engine = AnonymizerEngine()

            # Invoke the anonymize function with the text, analyzer results and
            # Operators to define the anonymization type.
        result = engine.anonymize(
            text=text,
            operators={"DEFAULT": OperatorConfig(operator, operator_config)},
            analyzer_results=results
        )
        print("res:")
        print(result)
        print(result.text)
        print(type(result.text))


        return result.text