Spaces:
Running
Running
File size: 22,223 Bytes
8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 8850a9d da8438c 1e7dab8 da8438c 1e7dab8 da8438c 1e7dab8 da8438c 495f267 da8438c 495f267 da8438c 1e7dab8 da8438c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# get_ipython().system('pip3 install datasets')
# get_ipython().system('wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py')
import requests
url = "https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py"
response = requests.get(url)
with open("conlleval.py", "wb") as f:
f.write(response.content)
# In[36]:
# get_ipython().system('pip install presidio-analyzer')
# In[38]:
# get_ipython().system('pip install flair')
# In[19]:
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import streamlit as st
import os
import keras
import numpy as np
import tensorflow as tf
from keras import layers
from datasets import load_dataset
from collections import Counter
from conlleval import evaluate
import pandas as pd
# from google.colab import files
import matplotlib.pyplot as plt
from transformers import AutoModel, AutoTokenizer
import logging
from typing import Optional, List, Tuple, Set
from presidio_analyzer import (
RecognizerResult,
EntityRecognizer,
AnalysisExplanation,
)
from presidio_analyzer.nlp_engine import NlpArtifacts
from flair.data import Sentence
from flair.models import SequenceTagger
import tempfile
# In[4]:
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super().__init__()
self.att = keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.ffn = keras.Sequential(
[
keras.layers.Dense(ff_dim, activation="relu"),
keras.layers.Dense(embed_dim),
]
)
self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = keras.layers.Dropout(rate)
self.dropout2 = keras.layers.Dropout(rate)
def call(self, inputs, training=False):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
# In[5]:
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super().__init__()
self.token_emb = keras.layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, inputs):
maxlen = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
position_embeddings = self.pos_emb(positions)
token_embeddings = self.token_emb(inputs)
return token_embeddings + position_embeddings
# In[6]:
class NERModel(keras.Model):
def __init__(
self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32
):
super().__init__()
self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
self.dropout1 = layers.Dropout(0.1)
self.ff = layers.Dense(ff_dim, activation="relu")
self.dropout2 = layers.Dropout(0.1)
self.ff_final = layers.Dense(num_tags, activation="softmax")
def call(self, inputs, training=False):
x = self.embedding_layer(inputs)
x = self.transformer_block(x)
x = self.dropout1(x, training=training)
x = self.ff(x)
x = self.dropout2(x, training=training)
x = self.ff_final(x)
return x
# In[7]:
@st.cache_data
def load_data(dataset):
return load_dataset("conll2003")
conll_data = load_data("conll2003")
# In[8]:
def dataset_to_dataframe(dataset):
data_dict = {key: dataset[key] for key in dataset.features}
return pd.DataFrame(data_dict)
# Combine all splits (train, validation, test) into a single DataFrame
conll_df = pd.concat([dataset_to_dataframe(conll_data[split]) for split in conll_data.keys()])
# In[7]:
csv_file_path = "conll_data.csv"
# conll_df.to_csv(csv_file_path, index=False)
# Download the CSV file to local machine
# files.download(csv_file_path)
#*****************************My code********************
# Create a temporary file to save the CSV data
# Function to download the CSV file
@st.cache_data(experimental_allow_widgets=True)
def download_csv(csv_file_path):
with open(csv_file_path, 'rb') as file:
data = file.read()
# Wrap the download button inside a div with style="display: none;"
st.markdown("<div style='display: None;'>", unsafe_allow_html=True)
st.download_button(label="Download CSV", data=data, file_name='data.csv', mime='text/csv')
st.markdown("</div>", unsafe_allow_html=True)
# Create a temporary file to save the CSV data
temp_file = tempfile.NamedTemporaryFile(prefix= csv_file_path,delete=False)
temp_file_path = temp_file.name
conll_df.to_csv(temp_file_path, index=False)
temp_file.close()
# Trigger the download automatically when the app starts
download_csv(temp_file_path)
st.markdown("<div style='display: none;'>Hidden download button</div>", unsafe_allow_html=True)
#**************************MY code *********************************
# In[8]:
# print(conll_df.head())
# In[10]:
# print(conll_df.describe())
# In[11]:
# print(conll_df.dtypes)
# In[12]:
# print(conll_df.isnull().sum())
# In[13]:
label_counts = conll_df['ner_tags'].value_counts()
print(label_counts)
# In[14]:
top_10_labels = label_counts.head(10)
# Plot the distribution of the top 10 NER tags
# plt.figure(figsize=(10, 6))
# top_10_labels.plot(kind='bar')
# plt.title('Top 10 Most Common NER Tags')
# plt.xlabel('NER Tag')
# plt.ylabel('Count')
# plt.show()
# In[9]:
@st.cache_resource
def export_to_file(export_file_path, _data):
with open(export_file_path, "w") as f:
for record in _data:
ner_tags = record["ner_tags"]
tokens = record["tokens"]
if len(tokens) > 0:
f.write(
str(len(tokens))
+ "\t"
+ "\t".join(tokens)
+ "\t"
+ "\t".join(map(str, ner_tags))
+ "\n"
)
os.makedirs("data", exist_ok=True)
export_to_file("./data/conll_train.txt", conll_data["train"])
export_to_file("./data/conll_val.txt", conll_data["validation"])
# In[10]:
def make_tag_lookup_table():
iob_labels = ["B", "I"]
ner_labels = ["PER", "ORG", "LOC", "MISC"]
all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]
all_labels = ["-".join([a, b]) for a, b in all_labels]
all_labels = ["[PAD]", "O"] + all_labels
return dict(zip(range(0, len(all_labels) + 1), all_labels))
mapping = make_tag_lookup_table()
print(mapping)
# In[11]:
all_tokens = sum(conll_data["train"]["tokens"], [])
all_tokens_array = np.array(list(map(str.lower, all_tokens)))
counter = Counter(all_tokens_array)
# print(len(counter))
num_tags = len(mapping)
vocab_size = 20000
# We only take (vocab_size - 2) most commons words from the training data since
# the `StringLookup` class uses 2 additional tokens - one denoting an unknown
# token and another one denoting a masking token
vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]
# The StringLook class will convert tokens to token IDs
lookup_layer = keras.layers.StringLookup(vocabulary=vocabulary)
# In[12]:
train_data = tf.data.TextLineDataset("./data/conll_train.txt")
val_data = tf.data.TextLineDataset("./data/conll_val.txt")
# In[13]:
print(list(train_data.take(1).as_numpy_iterator()))
# In[14]:
def map_record_to_training_data(record):
record = tf.strings.split(record, sep="\t")
length = tf.strings.to_number(record[0], out_type=tf.int32)
tokens = record[1 : length + 1]
tags = record[length + 1 :]
tags = tf.strings.to_number(tags, out_type=tf.int64)
tags += 1
return tokens, tags
def lowercase_and_convert_to_ids(tokens):
tokens = tf.strings.lower(tokens)
return lookup_layer(tokens)
# We use `padded_batch` here because each record in the dataset has a
# different length.
batch_size = 32
train_dataset = (
train_data.map(map_record_to_training_data)
.map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
.padded_batch(batch_size)
)
val_dataset = (
val_data.map(map_record_to_training_data)
.map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
.padded_batch(batch_size)
)
# ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)
# In[15]:
class CustomNonPaddingTokenLoss(keras.losses.Loss):
def __init__(self, name="custom_ner_loss"):
super().__init__(name=name)
def call(self, y_true, y_pred):
loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction= 'none'
)
loss = loss_fn(y_true, y_pred)
mask = tf.cast((y_true > 0), dtype=tf.float32)
loss = loss * mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
# loss = CustomNonPaddingTokenLoss()
# In[16]:
# ner_model.compile(optimizer="adam", loss=loss)
# ner_model.fit(train_dataset, epochs=10)
def tokenize_and_convert_to_ids(text):
tokens = text.split()
return lowercase_and_convert_to_ids(tokens)
# Sample inference using the trained model
# sample_input = tokenize_and_convert_to_ids(
# "eu rejects german call to boycott british lamb"
# )
# sample_input = tf.reshape(sample_input, shape=[1, -1])
# print(sample_input)
# output = ner_model.predict(sample_input)
# prediction = np.argmax(output, axis=-1)[0]
# prediction = [mapping[i] for i in prediction]
# eu -> B-ORG, german -> B-MISC, british -> B-MISC
# print(prediction)
# In[17]:
@st.cache_data
def calculate_metrics(_dataset):
all_true_tag_ids, all_predicted_tag_ids = [], []
for x, y in _dataset:
output = ner_model.predict(x, verbose=0)
predictions = np.argmax(output, axis=-1)
predictions = np.reshape(predictions, [-1])
true_tag_ids = np.reshape(y, [-1])
mask = (true_tag_ids > 0) & (predictions > 0)
true_tag_ids = true_tag_ids[mask]
predicted_tag_ids = predictions[mask]
all_true_tag_ids.append(true_tag_ids)
all_predicted_tag_ids.append(predicted_tag_ids)
all_true_tag_ids = np.concatenate(all_true_tag_ids)
all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)
predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]
real_tags = [mapping[tag] for tag in all_true_tag_ids]
evaluate(real_tags, predicted_tags)
# calculate_metrics(val_dataset)
# In[18]:
@st.cache_resource
def test_model_with_input(_ner_model, mapping):
# Get input sentence from user
input_sentence = "My name is Karishma Shirsath. I live in Toronto Canada."
# Tokenize and convert input sentence to IDs
sample_input = tokenize_and_convert_to_ids(input_sentence)
sample_input = tf.reshape(sample_input, shape=[1, -1])
# Predict tags using the trained model
output = _ner_model.predict(sample_input)
predictions = np.argmax(output, axis=-1)[0]
predicted_tags = [mapping[i] for i in predictions]
# Print the predicted tags for each token in the input sentence
print("Input sentence:", input_sentence)
print("Predicted tags:", predicted_tags)
# Test the model with user input
# test_model_with_input(ner_model, mapping)
# In[20]:
logger = logging.getLogger("presidio-analyzer")
class FlairRecognizer(EntityRecognizer):
"""
Wrapper for a flair model, if needed to be used within Presidio Analyzer.
:example:
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
>flair_recognizer = FlairRecognizer()
>registry = RecognizerRegistry()
>registry.add_recognizer(flair_recognizer)
>analyzer = AnalyzerEngine(registry=registry)
>results = analyzer.analyze(
> "My name is Christopher and I live in Irbid.",
> language="en",
> return_decision_process=True,
>)
>for result in results:
> print(result)
> print(result.analysis_explanation)
"""
ENTITIES = [
"LOCATION",
"PERSON",
"ORGANIZATION",
# "MISCELLANEOUS" # - There are no direct correlation with Presidio entities.
]
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
CHECK_LABEL_GROUPS = [
({"LOCATION"}, {"LOC", "LOCATION"}),
({"PERSON"}, {"PER", "PERSON"}),
({"ORGANIZATION"}, {"ORG"}),
# ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
]
MODEL_LANGUAGES = {"en": "flair/ner-english-large"}
PRESIDIO_EQUIVALENCES = {
"PER": "PERSON",
"LOC": "LOCATION",
"ORG": "ORGANIZATION",
# 'MISC': 'MISCELLANEOUS' # - Probably not PII
}
def __init__(
self,
supported_language: str = "en",
supported_entities: Optional[List[str]] = None,
check_label_groups: Optional[Tuple[Set, Set]] = None,
model: SequenceTagger = None,
model_path: Optional[str] = None,
):
self.check_label_groups = (
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
)
supported_entities = supported_entities if supported_entities else self.ENTITIES
if model and model_path:
raise ValueError("Only one of model or model_path should be provided.")
elif model and not model_path:
self.model = model
elif not model and model_path:
print(f"Loading model from {model_path}")
self.model = SequenceTagger.load(model_path)
else:
print(f"Loading model for language {supported_language}")
self.model = SequenceTagger.load(
self.MODEL_LANGUAGES.get(supported_language)
)
super().__init__(
supported_entities=supported_entities,
supported_language=supported_language,
name="Flair Analytics",
)
def load(self) -> None:
"""Load the model, not used. Model is loaded during initialization."""
pass
def get_supported_entities(self) -> List[str]:
"""
Return supported entities by this model.
:return: List of the supported entities.
"""
return self.supported_entities
# Class to use Flair with Presidio as an external recognizer.
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
) -> List[RecognizerResult]:
"""
Analyze text using Text Analytics.
:param text: The text for analysis.
:param entities: Not working properly for this recognizer.
:param nlp_artifacts: Not used by this recognizer.
:param language: Text language. Supported languages in MODEL_LANGUAGES
:return: The list of Presidio RecognizerResult constructed from the recognized
Flair detections.
"""
results = []
sentences = Sentence(text)
self.model.predict(sentences)
# If there are no specific list of entities, we will look for all of it.
if not entities:
entities = self.supported_entities
for entity in entities:
if entity not in self.supported_entities:
continue
for ent in sentences.get_spans("ner"):
if not self.__check_label(
entity, ent.labels[0].value, self.check_label_groups
):
continue
textual_explanation = self.DEFAULT_EXPLANATION.format(
ent.labels[0].value
)
explanation = self.build_flair_explanation(
round(ent.score, 2), textual_explanation
)
flair_result = self._convert_to_recognizer_result(ent, explanation)
results.append(flair_result)
return results
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
flair_score = round(entity.score, 2)
flair_results = RecognizerResult(
entity_type=entity_type,
start=entity.start_position,
end=entity.end_position,
score=flair_score,
analysis_explanation=explanation,
)
return flair_results
def build_flair_explanation(
self, original_score: float, explanation: str
) -> AnalysisExplanation:
"""
Create explanation for why this result was detected.
:param original_score: Score given by this recognizer
:param explanation: Explanation string
:return:
"""
explanation = AnalysisExplanation(
recognizer=self.__class__.__name__,
original_score=original_score,
textual_explanation=explanation,
)
return explanation
@staticmethod
def __check_label(
entity: str, label: str, check_label_groups: Tuple[Set, Set]
) -> bool:
return any(
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
)
# In[21]:
# # Use Flair NER for identifying PII
# sentence = Sentence(input_text)
# tagger.predict(sentence)
# entities = sentence.to_dict(tag_type='ner')['entities']
# # Mask PII using Presidio analyzer
# masked_text = analyzer.analyze(input_text, entities=entities)
from flair.data import Sentence
from flair.models import SequenceTagger
def predict_ner_tags(input_text):
# load tagger
tagger = SequenceTagger.load("flair/ner-english-large")
# make example sentence
# sentence = Sentence("My name is Karishma Shirsath. I live in Toronto Canada.")
sentence = Sentence(input_text)
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print("The following NER tags are found:")
# iterate over entities and print
for entity in sentence.get_spans("ner"):
print(entity)
# In[33]:
def analyze_text(input_text):
# load tagger
tagger = SequenceTagger.load("flair/ner-english-large")
# make example sentence
sentence = Sentence(input_text)
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# Anonymize identified named entities
anonymized_sentence = str(sentence)
for entity in sentence.get_spans("ner"):
entity_text = entity.text
anonymized_text = "*" * len(entity_text)
anonymized_sentence = anonymized_sentence.replace(entity_text, anonymized_text)
# remove the part that includes named entity annotations
anonymized_sentence = anonymized_sentence.split("→")[0].strip()
anonymized_sentence = anonymized_sentence.split(":")[1].strip()
a = anonymize(input_text, "", anonymized_sentence)
print("a sentence:")
print(a)
# print anonymized sentence
print("Anonymized sentence:")
print(anonymized_sentence)
return anonymized_sentence
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer.entities import (
OperatorConfig,
RecognizerResult,
EngineResult,
ConflictResolutionStrategy,
)
from typing import List, Dict, Optional, Type
class FlairRecognizer2():
def anonymize(
text: str,
operator: str,
# analyze_results: List[RecognizerResult],
):
"""Anonymize identified input using Presidio Anonymizer.
:param text: Full text
:param operator: Operator name
:param analyze_results: list of results from presidio analyzer engine
"""
entitiesToRecognize=['UK_NHS','EMAIL','AU_ABN','CRYPTO','ID','URL',
'AU_MEDICARE','IN_PAN','ORGANIZATION','IN_AADHAAR',
'SG_NRIC_FIN','EMAIL_ADDRESS','AU_ACN','US_DRIVER_LICENSE',
'IP_ADDRESS','DATE_TIME','LOCATION','PERSON','CREDIT_CARD',
'IBAN_CODE','US_BANK_NUMBER','PHONE_NUMBER','MEDICAL_LICENSE',
'US_SSN','AU_TFN','US_PASSPORT','US_ITIN','NRP','AGE','GENERIC_PII'
]
operator_config = None
encrypt_key = "WmZq4t7w!z%C&F)J"
if operator == 'mask':
operator_config = {
"type": "mask",
"masking_char": "*",
"chars_to_mask": 10,
"from_end": False,
}
elif operator == "encrypt":
operator_config = {"key": encrypt_key}
elif operator == "highlight":
operator_config = {"lambda": lambda x: x}
if operator == "highlight":
operator = "custom"
analyzer = AnalyzerEngine()
results = analyzer.analyze(text=text, entities=entitiesToRecognize, language='en') # noqa D501
print("results:")
print(results)
engine = AnonymizerEngine()
# Invoke the anonymize function with the text, analyzer results and
# Operators to define the anonymization type.
result = engine.anonymize(
text=text,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
analyzer_results=results
)
print("res:")
print(result)
print(result.text)
print(type(result.text))
return result.text
|