Spaces:
Running
Running
import json | |
import subprocess | |
import time | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
llm = None | |
llm_model = None | |
# Download the new model | |
hf_hub_download( | |
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", | |
filename="llama-3.2-1b-instruct-q4_k_m.gguf", | |
local_dir="./models" | |
) | |
def get_messages_formatter_type(model_name): | |
return MessagesFormatterType.LLAMA_3 | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
global llm | |
global llm_model | |
chat_template = get_messages_formatter_type(model) | |
if llm is None or llm_model != model: | |
llm = Llama( | |
model_path=f"models/{model}", | |
n_gpu_layers=0, # Adjust based on your GPU | |
n_batch=32398, # Adjust based on your RAM | |
n_ctx=512, # Adjust based on your RAM and desired context length | |
) | |
llm_model = model | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
start_time = time.time() | |
token_count = 0 | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
token_count += len(output.split()) | |
yield outputs | |
end_time = time.time() | |
latency = end_time - start_time | |
speed = token_count / (end_time - start_time) | |
print(f"Latency: {latency} seconds") | |
print(f"Speed: {speed} tokens/second") | |
description = """<p><center> | |
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a> | |
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages. | |
</center></p> | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown([ | |
"llama-3.2-1b-instruct-q4_k_m.gguf" | |
], | |
value="llama-3.2-1b-instruct-q4_k_m.gguf", | |
label="Model" | |
), | |
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include: | |
1. Complex reasoning and problem-solving | |
2. Multilingual understanding and generation | |
3. Creative and analytical writing | |
4. Code understanding and generation | |
5. Task decomposition and step-by-step guidance | |
6. Summarization and information extraction | |
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses: | |
""", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=1, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( | |
body_background_fill_dark="#16141c", | |
block_background_fill_dark="#16141c", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1e1c26", | |
input_background_fill_dark="#292733", | |
button_secondary_background_fill_dark="#24212b", | |
border_color_accent_dark="#343140", | |
border_color_primary_dark="#343140", | |
background_fill_secondary_dark="#16141c", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#292733", | |
), | |
title="Meta Llama 3.2 (1B)", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=True, | |
show_copy_button=True | |
), | |
examples=[ | |
["Hello! Can you introduce yourself?"], | |
["What's the capital of France?"], | |
["Can you explain the concept of photosynthesis?"], | |
["Write a short story about a robot learning to paint."], | |
["Explain the difference between machine learning and deep learning."], | |
["Summarize the key points of climate change and its global impact."], | |
["Explain quantum computing to a 10-year-old."], | |
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."] | |
], | |
cache_examples=False, | |
autofocus=False, | |
concurrency_limit=None | |
) | |
if __name__ == "__main__": | |
demo.launch() |