stakelovelace
commit from tesla
457f3a4
raw
history blame
4.21 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
from datasets import Dataset
import pandas as pd
import csv
from transformers import TrainingArguments, Trainer
import tensorflow as tf
# Check TensorFlow GPU availability
print("GPUs Available: ", tf.config.list_physical_devices('GPU'))
import os
# Setting the environment variable for MPS
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
def get_device():
"""Automatically chooses the best device."""
if torch.cuda.is_available():
return torch.device('cuda')
elif torch.backends.mps.is_available():
return torch.device('mps')
else:
return torch.device('cpu')
def load_data_and_config(data_path):
"""Loads training data from CSV."""
data = []
with open(data_path, newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile, delimiter=';')
for row in reader:
data.append({'text': row['description']})
return data
def train_model(model, tokenizer, data, device):
"""Trains the model using the Hugging Face Trainer API."""
inputs = [tokenizer(d['text'], max_length=512, truncation=True, padding='max_length', return_tensors="pt") for d in data]
dataset = Dataset.from_dict({
'input_ids': [x['input_ids'].squeeze() for x in inputs],
'labels': [x['input_ids'].squeeze() for x in inputs]
})
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=8,
gradient_accumulation_steps=4,
fp16=True, # Enable mixed precision
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer
)
trainer.train()
# Perform any remaining steps such as logging, saving, etc.
trainer.save_model()
def main(api_name, base_url):
device = get_device() # Get the appropriate device
data = load_data_and_config("train2.csv")
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
# Load the configuration for a specific model
config = AutoConfig.from_pretrained('google/codegemma-2b')
# Update the activation function
config.hidden_act = 'gelu_pytorch_tanh' # Set to use approximate GeLU
model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
#model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
# Example assuming you have a prepared dataset for classification
#model = BertForSequenceClassification.from_pretrained('thenlper/gte-small', num_labels=2, is_decoder=True) # binary classification
model.to(device) # Move model to the appropriate device
train_model(model, tokenizer, data, device)
model.save_pretrained("./fine_tuned_model")
tokenizer.save_pretrained("./fine_tuned_model")
prompt = "I need to retrieve the latest block on chain using a python script"
api_query = generate_api_query(model, tokenizer, prompt, "latest block on chain", api_name, base_url)
print(f"Generated code: {api_query}")
def generate_api_query(model, tokenizer, prompt, desired_output, api_name, base_url):
# Prepare input prompt for the model, ensure tensors are compatible with PyTorch
input_ids = tokenizer.encode(f"{prompt} Write an API query to {api_name} to get {desired_output}", return_tensors="pt")
# Ensure input_ids are on the same device as the model
input_ids = input_ids.to(model.device)
# Generate query using model with temperature for randomness
output = model.generate(input_ids, max_length=128, truncation=True, padding='max_length', temperature=0.1, do_sample=True)
# Decode the generated query tokens
query = tokenizer.decode(output[0], skip_special_tokens=True)
return f"{base_url}/{query}"
if __name__ == "__main__":
api_name = "Koios"
base_url = "https://api.koios.rest/v1"
main(api_name, base_url)