stakelovelace commited on
Commit
339b8e7
1 Parent(s): 457f3a4

commit from tesla

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -33,7 +33,7 @@ def load_data_and_config(data_path):
33
 
34
  def train_model(model, tokenizer, data, device):
35
  """Trains the model using the Hugging Face Trainer API."""
36
- inputs = [tokenizer(d['text'], max_length=512, truncation=True, padding='max_length', return_tensors="pt") for d in data]
37
  dataset = Dataset.from_dict({
38
  'input_ids': [x['input_ids'].squeeze() for x in inputs],
39
  'labels': [x['input_ids'].squeeze() for x in inputs]
@@ -42,9 +42,9 @@ def train_model(model, tokenizer, data, device):
42
  training_args = TrainingArguments(
43
  output_dir='./results',
44
  num_train_epochs=3,
45
- per_device_train_batch_size=8,
46
- gradient_accumulation_steps=4,
47
- fp16=True, # Enable mixed precision
48
  warmup_steps=500,
49
  weight_decay=0.01,
50
  logging_dir='./logs',
@@ -70,8 +70,9 @@ def main(api_name, base_url):
70
  # Load the configuration for a specific model
71
  config = AutoConfig.from_pretrained('google/codegemma-2b')
72
  # Update the activation function
73
- config.hidden_act = 'gelu_pytorch_tanh' # Set to use approximate GeLU
74
-
 
75
  model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
76
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
77
  # Example assuming you have a prepared dataset for classification
 
33
 
34
  def train_model(model, tokenizer, data, device):
35
  """Trains the model using the Hugging Face Trainer API."""
36
+ inputs = [tokenizer(d['text'], max_length=256, truncation=True, padding='max_length', return_tensors="pt") for d in data]
37
  dataset = Dataset.from_dict({
38
  'input_ids': [x['input_ids'].squeeze() for x in inputs],
39
  'labels': [x['input_ids'].squeeze() for x in inputs]
 
42
  training_args = TrainingArguments(
43
  output_dir='./results',
44
  num_train_epochs=3,
45
+ per_device_train_batch_size=1,
46
+ gradient_accumulation_steps=2,
47
+ # fp16=True, # Enable mixed precision
48
  warmup_steps=500,
49
  weight_decay=0.01,
50
  logging_dir='./logs',
 
70
  # Load the configuration for a specific model
71
  config = AutoConfig.from_pretrained('google/codegemma-2b')
72
  # Update the activation function
73
+ config.hidden_act = '' # Set to use approximate GeLU gelu_pytorch_tanh
74
+ config.hidden_activation = 'gelu' # Set to use GeLU
75
+
76
  model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
77
  #model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
78
  # Example assuming you have a prepared dataset for classification