update-app-with-api

#1
by bright1 - opened
Files changed (1) hide show
  1. app.py +51 -119
app.py CHANGED
@@ -1,149 +1,81 @@
1
  # Loading key libraries
2
  import streamlit as st
3
  import os
4
- import pickle
5
  import numpy as np
6
  import pandas as pd
7
- import re
8
- from pathlib import Path
9
  from PIL import Image
10
  import matplotlib.pyplot as plt
11
  import seaborn as sns
 
 
 
12
 
 
 
 
 
 
 
 
 
 
13
 
14
 
15
  # Setting the page configurations
16
- st.set_page_config(page_title= "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
17
 
18
  # Setting the page title
19
  st.title("Grocery Store Forecasting Prediction")
20
 
21
- # Load the saved data
22
- df = pd.read_csv('Grocery.csv')
23
-
24
-
25
- toolkit = "toolkit_folder"
26
- @st.cache_resource
27
- def load_toolkit(filepath = toolkit):
28
- with open(toolkit, "rb") as file:
29
- loaded_toolkit = pickle.load(file)
30
- return loaded_toolkit
31
-
32
-
33
- toolkit = load_toolkit()
34
- Encoder = toolkit["OneHotEncoder"]
35
- model = toolkit["model"]
36
-
37
 
 
 
38
 
39
- # main sections of the app
40
- menu = st.sidebar.radio('menu',['Home view','Prediction target'])
41
 
42
- if menu == 'Home view':
43
- st.write('Grocery Store Time Series Forecasting')
44
- st.image('images1.jpg',width = 450)
45
- st.write('Graphical representation and Data Overview')
46
- if st.checkbox('Data Set '):
47
- st.table(df.head(15))
48
- st.title('Charts')
49
- graph = st.selectbox('Varieties of graphs',['scatter plot','Bar chat','Histogram'])
50
- if graph == 'scatter plot':
51
- fig,ax = plt.subplots(figsize=(10,5))
52
- sns.scatterplot(y = 'target',x = 'onpromotion',data = df.iloc[:1000],palette = 'bright',hue = 'city');
53
- st.pyplot(fig)
 
 
 
 
 
 
54
 
55
- if graph == 'Bar chat':
56
- fig,ax = plt.subplots(figsize=(10,5))
57
- t = df.groupby("city")["target"].sum().reset_index().sort_values(by="target",ascending=False).iloc[:10]
58
- sns.barplot(data=t[:20] , y="target", x="city", palette='Blues_d')
59
- st.pyplot(fig)
60
 
61
- if graph == 'Histogram':
62
- fig,ax = plt.subplots(figsize=(10,5))
63
- st.write('Target Categories')
64
- sns.distplot(df.target.iloc[:20], kde=True)
65
- st.pyplot(fig)
66
-
67
 
 
68
 
 
69
 
 
 
 
 
 
 
 
 
70
 
71
- if menu == 'Prediction target':
72
- st.image('image 2.jpg', width = 460)
73
-
74
- st.sidebar.markdown('User Input Details and Information')
75
-
76
- store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique())))
77
- category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique())))
78
- onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min())
79
- year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique())))
80
- month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique())))
81
- dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min())
82
- dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min())
83
- dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min())
84
- weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min())
85
- quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min())
86
- is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min())
87
- is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min())
88
- is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min())
89
- is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min())
90
- is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min())
91
- is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min())
92
- year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min())
93
- city = st.sidebar.selectbox("city:", options= sorted(set(df["city"])))
94
- store_type= st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min())
95
- cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique())))
96
-
97
-
98
-
99
- input_df = {
100
- 'store_id':[store_id],
101
- 'category_id':[category_id],
102
- 'onpromotion' :[onpromotion],
103
- 'year' : [year],
104
- 'month' :[month],
105
- 'dayofmonth' :[dayofmonth],
106
- 'dayofweek' : [dayofweek],
107
- 'dayofyear' : [dayofyear],
108
- 'weekofyear' : weekofyear,
109
- 'quarter' : [quarter],
110
- 'is_month_start' : [is_month_start],
111
- 'is_month_end' : [is_month_start],
112
- 'is_quarter_start' : [is_quarter_start],
113
- 'is_quarter_end' : [is_quarter_end],
114
- 'is_year_start' : [is_year_start],
115
- 'is_year_end' : [is_year_end],
116
- 'year_weekofyear' : [year_weekofyear],
117
- 'city' : [city],
118
- 'type' : [store_type],
119
- 'cluster': [cluster]
120
- }
121
-
122
- # Put the input dictionary in a dataset
123
- input_data = pd.DataFrame(input_df)
124
-
125
-
126
-
127
- # defining categories and numeric columns
128
-
129
- col = ['city']
130
- columns = list(input_data.columns)
131
- encoded_cat = Encoder.transform(input_data[col])
132
- encoded_cols = Encoder.get_feature_names()
133
- encoded_cat_ = pd.DataFrame(encoded_cat, columns=encoded_cols)
134
 
135
 
136
-
137
- # we dropped the categorical encoder column before we concat
138
- train_enc = input_data.drop(['city'],axis = 1)
139
- input_d = pd.concat([train_enc, encoded_cat_], axis=1)
140
-
141
- # convert input_data to a numpy array before flattening to convert it back to a 2D array
142
- input_df= input_d.to_numpy()
143
- prediction = model.predict(input_df.flatten().reshape(1, -1))
144
-
145
 
146
- if st.button('Predict'):
147
- st.success('The predicted target is ' + str(round(prediction[0],2)))
 
 
 
148
 
149
 
 
1
  # Loading key libraries
2
  import streamlit as st
3
  import os
 
4
  import numpy as np
5
  import pandas as pd
6
+
 
7
  from PIL import Image
8
  import matplotlib.pyplot as plt
9
  import seaborn as sns
10
+ import requests
11
+ import datetime
12
+
13
 
14
+ # set api endpoint
15
+ URL = 'https://bright1-grocery-store-sales-forecasting-api.hf.space'
16
+ API_ENDPOINT = '/predict'
17
+
18
+ # get list/choices for inputs
19
+ CITIES = ['Accra', 'Aflao', 'Akim Oda', 'Akwatia', 'Bekwai', 'Cape coast', 'Elmina,', 'Gbawe', 'Ho', 'Hohoe', 'intampo', 'Koforidua', 'Kumasi', 'Mampong', 'Obuasi', 'Prestea', 'Suhum', 'Tamale', 'Techiman', 'Tema', 'Teshie', 'Winneba']
20
+ CLUSTER = [ i for i in range(0, 17)]
21
+ STORE_ID = [ i for i in range(1, 55)]
22
+ CATEGORY_ID = [ i for i in range(0, 35)]
23
 
24
 
25
  # Setting the page configurations
26
+ st.set_page_config(page_title = "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto")
27
 
28
  # Setting the page title
29
  st.title("Grocery Store Forecasting Prediction")
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ # src\app\images1.jpg
33
+ image1 = Image.open('images1.jpg')
34
 
 
 
35
 
36
+ def make_prediction(store_id, category_id, onpromotion, city, store_type, cluster, date):
37
+
38
+
39
+ parameters = {
40
+ 'store_id':int(store_id),
41
+ 'category_id':int(category_id),
42
+ 'onpromotion' :int(onpromotion),
43
+ 'city' : city,
44
+ 'store_type' : int(store_type),
45
+ 'cluster': int(cluster),
46
+ 'date_': date,
47
+
48
+ }
49
+
50
+ # make a request to the api
51
+ response = requests.post(url=f'{URL}{API_ENDPOINT}', params=parameters)
52
+
53
+ sales_value = response.json()['sales']
54
 
55
+ sales_value = round(sales_value, 4)
56
+ return sales_value
 
 
 
57
 
 
 
 
 
 
 
58
 
59
+ st.image(image1, width = 700)
60
 
61
+ st.sidebar.markdown('User Input Details and Information')
62
 
63
+ # Create interface
64
+ date= st.sidebar.date_input("Enter the Date",datetime.date(2023, 6, 30))
65
+ store_id= st.sidebar.selectbox('Store id', options=STORE_ID)
66
+ category_id= st.sidebar.selectbox('categegory_id', options=CATEGORY_ID)
67
+ onpromotion= st.sidebar.number_input('onpromotion', step=1)
68
+ city = st.sidebar.selectbox("city:", options= CITIES)
69
+ store_type= st.sidebar.selectbox('type', options=[0, 1, 2, 3, 4])
70
+ cluster = st.sidebar.selectbox('cluster', options = CLUSTER )
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
 
 
 
 
 
 
 
 
 
74
 
75
+ # get predicted value
76
+ if st.sidebar.button('Predict', use_container_width=True, type='primary'):
77
+ # make prediction
78
+ sales_value = make_prediction(store_id, category_id, onpromotion,city, store_type, cluster, date)
79
+ st.success('The predicted target is ' + str(sales_value))
80
 
81