Spaces:
Running
on
Zero
Running
on
Zero
class FolderData(Dataset): | |
def __init__(self, | |
root_dir, | |
caption_file=None, | |
image_transforms=[], | |
ext="jpg", | |
default_caption="", | |
postprocess=None, | |
return_paths=False, | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
self.root_dir = Path(root_dir) | |
self.default_caption = default_caption | |
self.return_paths = return_paths | |
if isinstance(postprocess, DictConfig): | |
postprocess = instantiate_from_config(postprocess) | |
self.postprocess = postprocess | |
if caption_file is not None: | |
with open(caption_file, "rt") as f: | |
ext = Path(caption_file).suffix.lower() | |
if ext == ".json": | |
captions = json.load(f) | |
elif ext == ".jsonl": | |
lines = f.readlines() | |
lines = [json.loads(x) for x in lines] | |
captions = {x["file_name"]: x["text"].strip("\n") for x in lines} | |
else: | |
raise ValueError(f"Unrecognised format: {ext}") | |
self.captions = captions | |
else: | |
self.captions = None | |
if not isinstance(ext, (tuple, list, ListConfig)): | |
ext = [ext] | |
# Only used if there is no caption file | |
self.paths = [] | |
for e in ext: | |
self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}")))) | |
self.tform = make_tranforms(image_transforms) | |
def __len__(self): | |
if self.captions is not None: | |
return len(self.captions.keys()) | |
else: | |
return len(self.paths) | |
def __getitem__(self, index): | |
data = {} | |
if self.captions is not None: | |
chosen = list(self.captions.keys())[index] | |
caption = self.captions.get(chosen, None) | |
if caption is None: | |
caption = self.default_caption | |
filename = self.root_dir/chosen | |
else: | |
filename = self.paths[index] | |
if self.return_paths: | |
data["path"] = str(filename) | |
im = Image.open(filename).convert("RGB") | |
im = self.process_im(im) | |
data["image"] = im | |
if self.captions is not None: | |
data["txt"] = caption | |
else: | |
data["txt"] = self.default_caption | |
if self.postprocess is not None: | |
data = self.postprocess(data) | |
return data | |
def process_im(self, im): | |
im = im.convert("RGB") | |
return self.tform(im) | |
import random | |
class TransformDataset(): | |
def __init__(self, ds, extra_label="sksbspic"): | |
self.ds = ds | |
self.extra_label = extra_label | |
self.transforms = { | |
"align": transforms.Resize(768), | |
"centerzoom": transforms.CenterCrop(768), | |
"randzoom": transforms.RandomCrop(768), | |
} | |
def __getitem__(self, index): | |
data = self.ds[index] | |
im = data['image'] | |
im = im.permute(2,0,1) | |
# In case data is smaller than expected | |
im = transforms.Resize(1024)(im) | |
tform_name = random.choice(list(self.transforms.keys())) | |
im = self.transforms[tform_name](im) | |
im = im.permute(1,2,0) | |
data['image'] = im | |
data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}" | |
return data | |
def __len__(self): | |
return len(self.ds) | |
def hf_dataset( | |
name, | |
image_transforms=[], | |
image_column="image", | |
text_column="text", | |
split='train', | |
image_key='image', | |
caption_key='txt', | |
): | |
"""Make huggingface dataset with appropriate list of transforms applied | |
""" | |
ds = load_dataset(name, split=split) | |
tform = make_tranforms(image_transforms) | |
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}" | |
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}" | |
def pre_process(examples): | |
processed = {} | |
processed[image_key] = [tform(im) for im in examples[image_column]] | |
processed[caption_key] = examples[text_column] | |
return processed | |
ds.set_transform(pre_process) | |
return ds | |
class TextOnly(Dataset): | |
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1): | |
"""Returns only captions with dummy images""" | |
self.output_size = output_size | |
self.image_key = image_key | |
self.caption_key = caption_key | |
if isinstance(captions, Path): | |
self.captions = self._load_caption_file(captions) | |
else: | |
self.captions = captions | |
if n_gpus > 1: | |
# hack to make sure that all the captions appear on each gpu | |
repeated = [n_gpus*[x] for x in self.captions] | |
self.captions = [] | |
[self.captions.extend(x) for x in repeated] | |
def __len__(self): | |
return len(self.captions) | |
def __getitem__(self, index): | |
dummy_im = torch.zeros(3, self.output_size, self.output_size) | |
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c') | |
return {self.image_key: dummy_im, self.caption_key: self.captions[index]} | |
def _load_caption_file(self, filename): | |
with open(filename, 'rt') as f: | |
captions = f.readlines() | |
return [x.strip('\n') for x in captions] | |
import random | |
import json | |
class IdRetreivalDataset(FolderData): | |
def __init__(self, ret_file, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
with open(ret_file, "rt") as f: | |
self.ret = json.load(f) | |
def __getitem__(self, index): | |
data = super().__getitem__(index) | |
key = self.paths[index].name | |
matches = self.ret[key] | |
if len(matches) > 0: | |
retreived = random.choice(matches) | |
else: | |
retreived = key | |
filename = self.root_dir/retreived | |
im = Image.open(filename).convert("RGB") | |
im = self.process_im(im) | |
# data["match"] = im | |
data["match"] = torch.cat((data["image"], im), dim=-1) | |
return data | |