Spaces:
Sleeping
Sleeping
import gradio as gr | |
from modules import loaders, presets, shared, ui, ui_chat, utils | |
from modules.utils import gradio | |
def create_ui(default_preset): | |
generate_params = presets.load_preset(default_preset) | |
with gr.Tab("Parameters", elem_id="parameters"): | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset, label='Preset', elem_classes='slim-dropdown') | |
ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button') | |
shared.gradio['save_preset'] = gr.Button('๐พ', elem_classes='refresh-button') | |
shared.gradio['delete_preset'] = gr.Button('๐๏ธ', elem_classes='refresh-button') | |
with gr.Column(): | |
shared.gradio['filter_by_loader'] = gr.Dropdown(label="Filter by loader", choices=["All"] + list(loaders.loaders_and_params.keys()), value="All", elem_classes='slim-dropdown') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens']) | |
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature') | |
shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p') | |
shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k') | |
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p') | |
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff') | |
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff') | |
shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs') | |
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a') | |
with gr.Column(): | |
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty') | |
shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range') | |
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty') | |
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size') | |
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length') | |
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)') | |
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') | |
with gr.Accordion("Learn more", open=False): | |
gr.Markdown(""" | |
For a technical description of the parameters, the [transformers documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig) is a good reference. | |
The best presets, according to the [Preset Arena](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md) experiment, are: | |
* Instruction following: | |
1) Divine Intellect | |
2) Big O | |
3) simple-1 | |
4) Space Alien | |
5) StarChat | |
6) Titanic | |
7) tfs-with-top-a | |
8) Asterism | |
9) Contrastive Search | |
* Chat: | |
1) Midnight Enigma | |
2) Yara | |
3) Shortwave | |
### Temperature | |
Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness. | |
### top_p | |
If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results. | |
### top_k | |
Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results. | |
### typical_p | |
If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text. | |
### epsilon_cutoff | |
In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0. | |
### eta_cutoff | |
In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0. | |
### repetition_penalty | |
Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition. | |
### repetition_penalty_range | |
The number of most recent tokens to consider for repetition penalty. 0 makes all tokens be used. | |
### encoder_repetition_penalty | |
Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge. | |
### no_repeat_ngram_size | |
If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases. | |
### min_length | |
Minimum generation length in tokens. | |
### penalty_alpha | |
Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4. | |
""", elem_classes="markdown") | |
with gr.Column(): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
shared.gradio['guidance_scale'] = gr.Slider(-0.5, 2.5, step=0.05, value=generate_params['guidance_scale'], label='guidance_scale', info='For CFG. 1.5 is a good value.') | |
shared.gradio['negative_prompt'] = gr.Textbox(value=shared.settings['negative_prompt'], label='Negative prompt', lines=3, elem_classes=['add_scrollbar']) | |
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.') | |
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau') | |
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta') | |
with gr.Column(): | |
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.') | |
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams', info='For Beam Search, along with length_penalty and early_stopping.') | |
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty') | |
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping') | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.') | |
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum number of tokens/second', info='To make text readable in real time.') | |
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"') | |
with gr.Column(): | |
shared.gradio['auto_max_new_tokens'] = gr.Checkbox(value=shared.settings['auto_max_new_tokens'], label='auto_max_new_tokens', info='Expand max_new_tokens to the available context length.') | |
shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.') | |
shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.') | |
shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.') | |
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.') | |
shared.gradio['stream'] = gr.Checkbox(value=shared.settings['stream'], label='Activate text streaming') | |
ui_chat.create_chat_settings_ui() | |
def create_event_handlers(): | |
shared.gradio['filter_by_loader'].change(loaders.blacklist_samplers, gradio('filter_by_loader'), gradio(loaders.list_all_samplers()), show_progress=False) | |
shared.gradio['preset_menu'].change(presets.load_preset_for_ui, gradio('preset_menu', 'interface_state'), gradio('interface_state') + gradio(presets.presets_params())) | |
def get_truncation_length(): | |
if shared.args.max_seq_len != shared.args_defaults.max_seq_len: | |
return shared.args.max_seq_len | |
if shared.args.n_ctx != shared.args_defaults.n_ctx: | |
return shared.args.n_ctx | |
else: | |
return shared.settings['truncation_length'] | |