Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,8 @@
|
|
1 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
tokenizer = GPT2Tokenizer.from_pretrained("Loewolf/GPT_1")
|
8 |
-
|
9 |
-
# Eine Funktion, um Fragen an GPT-2 zu stellen
|
10 |
-
def ask_gpt2(question, history):
|
11 |
-
input_ids = tokenizer.encode(history + question, return_tensors="pt")
|
12 |
-
attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
|
13 |
-
|
14 |
-
# Antwort generieren
|
15 |
-
output = model.generate(input_ids, attention_mask=attention_mask)
|
16 |
-
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
17 |
-
new_history = history + "Nutzer: " + question + "\nLöwolf GPT: " + reply + "\n"
|
18 |
-
return new_history
|
19 |
-
|
20 |
-
# Erstellen des Gradio-Interfaces
|
21 |
-
interface = gr.Interface(
|
22 |
-
fn=ask_gpt2,
|
23 |
-
inputs=[gr.inputs.Textbox(lines=2, placeholder="Stelle deine Frage hier..."), gr.inputs.Textbox(lines=10, placeholder="Chat-Verlauf...")],
|
24 |
-
outputs=gr.outputs.Textbox(label="Antwort"),
|
25 |
-
layout="vertical"
|
26 |
-
)
|
27 |
|
28 |
# Starten der Gradio-App
|
29 |
interface.launch()
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
# Laden des GPT-Modells von Hugging Face und Erstellen der Gradio-Schnittstelle
|
4 |
+
interface = gr.Interface.load("models/Loewolf/GPT_1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Starten der Gradio-App
|
7 |
interface.launch()
|
8 |
+
|